English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1039-1053 DOI: 10.7536/PC160320 前一篇   后一篇

• 综述与评论 •

葫芦脲大环官能团功能化

董运红, 曹利平*   

  1. 西北大学化学与材料科学学院 合成与天然功能分子化学教育部重点实验室 西安 710127
  • 收稿日期:2016-03-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 曹利平 E-mail:chcaoliping@nwu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21472149)和陕西省自然科学基金项目(No.2016JM2025)资助

Functionalization of Cucurbit uril

Dong Yunhong, Cao Liping*   

  1. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
  • Received:2016-03-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21472149) and the Shaanxi Provincial Natural Science Foundation (No.2016JM2025).
新型大环化合物的设计与合成一直以来都是超分子化学的研究热点。冠醚、环糊精、杯芳烃和葫芦脲等经典大环分子,以及柱芳烃等新兴大环分子的发展丰富了超分子化学的研究内容。其中,官能团功能化的大环化合物被广泛应用于化学传感器、分子机器、仿生系统、超分子催化、刺激响应体系、功能材料以及药物传递等众多领域。葫芦脲大环具有一个刚性的疏水空腔,由于其独特而优秀的水相识别能力而备受关注。然而,相对于其他大环化合物,葫芦脲由于其官能团功能化难题而发展相当缓慢。近年来,葫芦脲大环官能团功能化的研究获得了巨大的突破,将葫芦脲大环的主客体识别性质从传统的超分子化学拓展到生物化学、材料化学以及药物化学等交叉研究领域。本文重点总结葫芦脲大环官能团功能化现阶段的研究进展,并对其合成方法进行简单明晰的总结与展望。
The design and synthesis of new macrocyclic compounds always represent one of hot research fields in supramolecular chemistry. The development of classical macrocyclic compounds, such as crown ether, cyclodextrin, calixarene, cucurbituril and pillararene, enriches the contents of supramolecular chemistry. Meanwhile, the functionalizated macrocyclic compounds have been successfully used to create a number of applications including chemical sensors, molecular machines, biomimetic systems, supramolecular catalysts, stimuli-responsive systems, functional materials and drug delivery. Cucurbit uril bearing a rigid and hydrophobic cavity has gained great attention for its unique recognition property in water. Compared to that of other macrocyclic compounds, however, the functionalization of cucurbit uril is more difficult due to their chemical inertness. In the past few years, numerous efforts have been devoted to functionalize cucurbit uril and develop their host-guest recognition property not only in supramolecular chemistry, but also bio-chemistry, material chemistry, and medicinal chemistry. This review mainly focuses on summarizing the research progress of functionalized cucurbit uril, and comments on the bright future of their synthetic methods briefly.

Contents
1 Introduction
2 Condensation of substituted glycoluril with formaldehyde
3 Condensation of substituted glycoluril biether with glycolril
4 Condensation of substituted glycoluril biether with glycoluril oligomers
5 Oxidation of cucurbit[n]uril
6 Condensation of glycoluril oligomers with substituted aldehydes
7 Conclusion

中图分类号: 

()
[1] Atwood J L, Steed J W. Encyclopedia of Supramolecular Chemistry. Marcel Dekker. Inc., 2004.
[2] Pedersen C J. The Discovery of Crown Ethers. Angew. Chem. Int. Ed., 1988, 27:1021.
[3] Diederich F, Stang P J, Tykwinski R R. Modern Supramolecular Chemistry.Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
[4] Bradshaw J S, Izatt R M. Acc. Chem. Res., 1997, 30:338.
[5] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36:621.
[6] Wang M X. Acc. Chem. Res., 2012, 45:182.
[7] Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc. Chem. Res., 2012, 45:1294.
[8] Guo D S, Liu Y. Acc. Chem. Res., 2014, 47:1925.
[9] Gokel G W, Leevy W M, Weber M E. Chem. Rev., 2004, 104:2723.
[10] Hapiot F, Tilloy S, Monflier E. Chem. Rev., 2006, 106:767.
[11] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109:5974.
[12] Cragg P J, Sharma K. Chem. Soc. Rev., 2012, 41:597.
[13] Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41:6042.
[14] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41:1621.
[15] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44:4844.
[16] Assaf K I, Nau W M. Chem. Soc. Rev., 2015, 44:394.
[17] Barrow S J, Kasera S, Rowland M J, Barrio J, Del Scherman O A. Chem. Rev., 2015, 115:12320.
[18] Behrend R, Meyer E, Rusche F. Liebigs Ann. Chem., 1905, 339:1.
[19] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103:7367.
[20] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122:540.
[21] Day A I, Blanch R J, Arnold A P, Lorenzo S, Lewis G R, Dance I. Angew. Chem. Int. Ed., 2002, 41:275.
[22] Liu S, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2005, 127:16798.
[23] Cheng X J, Liang L L, Chen K, Ji N N, Xiao X, Zhang J X, Zhang Y Q, Xue S F, Zhu Q J, Ni X L, Tao Z. Angew. Chem. Int. Ed., 2013, 52:7252.
[24] Li Q, Qiu S, Tao Z, Xue S, Zhu M. CN 105153385 A, 2015.
[25] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41:1621.
[26] Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41:5907.
[27] Strutt N L, Zhang H, Schneebeli S T, Stoddart J F. Acc. Chem. Res., 2014, 47:2631.
[28] 夏梦蝉(Xia M C), 杨英威(Yang Y W). 化学进展(Progress in Chemistry), 2015, 27:655.
[29] Han B H., Liu Y. Chin. J. Org. Chem., 2003, 23:139.
[30] 陶朱(Tao Z), 丛航(Cong H), 黄英(Huang Y), 倪新龙(Ni X L). 瓜环化学(The Chemistry of Cucurbit uril). 北京:科学出版社(Beijing:Science Press),2014. 12.
[31] Kim K, Selvapalam N, Ko Y H, Park K M, Kim D, Kim J. Chem. Soc. Rev., 2007, 36:267.
[32] 杨辉(Yang H), 谭业邦(Tan Y B), 黄晓玲(Huang X L), 王月霞(Wang Y X). 化学进展(Progress in Chemistry), 2009, 21:164.
[33] Flinn A, Hough G C, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1992, 31.
[34] Kellersberger K A, Anderson J D, Ward S M, Krakowiak K E, Dearden D V. J. Am. Chem. Soc., 2001, 123:11316.
[35] Sasmal S, Sinha M K, Keinan E. Org. Lett., 2004, 6:1225.
[36] Bardelang D, Udachin K A, Leek D M, Margeson J C, Chan G. Cryst. Growth Des., 2011, 11:5598.
[37] Zhao J, Kim H J, Oh J, Kim S Y, Lee J W, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed., 2001, 40:4233.
[38] Kim Y, Kim H, Ko Y H, Selvapalam N, Rekharsky M V, Inoue Y, Kim K. Chem.-Eur. J. 2009, 15:6143.
[39] Kim B S, Ko Y H, Kim Y, Lee H J, Selvapalam N, Lee H C, Kim K. Chem. Commun., 2008:2756.
[40] Wu F, Wu L H, Xiao X, Zhang Y Q, Xue S F, Tao Z, Day A I. J. Org. Chem., 2012, 77:606.
[41] Jiang X, Yao X, Huang X, Wang Q, Tian H. Chem. Commun., 2015, 51:2890.
[42] Ustrnul L, Kulhanek P, Lizal T, Sindelar V. Org. Lett., 2015, 17:1022.
[43] Lin J, Zhang Y, Zhang J, Xue S, Zhu Q, Tao Z. J. Mol. Struct., 2008, 875:442.
[44] Jon S Y, Selvapalam N, Oh D H, Kang J K, Kim S Y, Jeon Y J, Lee J W, Kim K. J. Am. Chem. Soc., 2003, 125:10186.
[45] Vinciguerra B, Cao L, Cannon J R, Zavalij P Y, Fenselau C, Isaacs L. J. Am. Chem. Soc., 2012, 134:13133.
[46] Zhao W X, Wang C Z, Chen L X, Cong H, Xiao X, Zhang Y Q, Xue S F, Huang Y, Tao Z, Zhu Q J. Org. Lett., 2015, 17:5072.
[47] Isobe H, Sato S, Nakamura E. Org. Lett., 2002, 4:1287.
[48] Ahmed M M, Koga K, Fukudome M, Sasaki H, Yuan D Q. Tetrahedron Lett., 2011, 52:4646.
[49] Lewin V, Rivollier J, Coudert S, Buisson D A, Baumann D, Rousseau B, Legrand F X, Kourilova H, Berthault P, Dognon J P, Heck M P, Huber G. Eur. J. Org. Chem., 2013:3857.
[50] Chakraborty A, Wu A, Witt D, Lagona J, Fettinger J C, Isaacs L. J. Am. Chem. Soc., 2002, 124:8297.
[51] Wu A, Chakraborty A, Wu A, Witt D, Lagona J, Damkaci F, Ofori M A, Chiles J K, Fettinger J C, Isaacs L. J. Org. Chem., 2002, 67:5817.
[52] Day A, Arnold A P, Blanch R J, Snushall B. J. Org. Chem., 2001, 66:8094.
[53] Day A I, Arnold A P, Blanch R J. Molecules, 2003, 8:74.
[54] Ni X L, Zhang Y Q, Zhu Q J, Xue S F, Tao Z.J.Mol.Strut.,2008, 876:322.
[55] Zhao Y J, Xue S F, Zhu Q J, Tao Z, Zhang J X, Wei Z B, Long L S, Hu M L, Xiao H P, Day A I. Chin. Sci. Bull., 2004, 49:1111.
[56] Zheng L, Zhu J, Zhang Y, Zhu Q, Xue S, Tao Z, Zhang J, Zhou X, Wei Z, Long L, Day A I. Supramol. Chem., 2008, 20:709.
[57] Huang W H, Zavalij P Y, Isaacs L. J. Am. Chem. Soc., 2008, 130:8446.
[58] Lucas D, Minami T, Iannuzzi G, Cao L, Wittenberg J B, Anzenbacher P J, Isaacs L. J. Am. Chem. Soc., 2011, 133:17966.
[59] Vinciguerra B, Cao L, Cannon J R, Zavalij P Y, Fenselau C, Isaacs L. J. Am. Chem. Soc., 2012, 134:13133.
[60] Cao L, Hettiarachchi G, Briken V, Isaacs L. Angew. Chem. Int. Ed., 2013, 52:12033.
[61] Vinciguerra B, Zavalij P, Isaacs L. Org. Lett., 2015, 17:5068.
[62] Yu Y, Li J, Zhang M, Cao L, Isaacs L. Chem. Commun., 2015, 51:3762.
[63] Jeon Y J, Kim H, Jon S, Selvapalam N, Oh D H, Seo I, Park C S, Jung S R, Koh D S, Kim K. J. Am. Chem. Soc., 2004, 126:15944.
[64] Lee H K, Park K M, Jeon Y J, Kim D, Oh D H, Kim H S, Park C K, Kim K. J. Am. Chem. Soc., 2005, 127:5006.
[65] Yun G, Hassan Z, Lee J, Kim J, Lee N S, Kim N H, Baek K, Hwang I, Park C G, Kim K. Angew. Chem. Int. Ed., 2014, 53:6414.
[66] Kim D, Kim E, Kim J, Park K M, Baek K, Jung M, Ko Y H, Sung W, Kim H S, Suh J H, Park C G, Na O S, Lee D K, Lee K E, Han S S, Kim K. Angew. Chem. Int. Ed., 2007, 46:3471.
[67] Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, Yang Y, Lim N, Park C G, Kim K. Angew. Chem. Int. Ed., 2010, 49:4405.
[68] Kim J, Ahn Y, Park K M, Kim Y, Ko Y H, Oh D H, Kim K. Angew. Chem. Int. Ed., 2007, 46:7393.
[69] Liu S M, Xu L, Wu C T, Feng Y Q. Talanta, 2004, 64:929.
[70] Lee D W, Park K M, Banerjee M, Ha S H, Lee T, Suh K, Paul S, Jung H, Kim J, Selvapalam N, Ryu S H, Kim K. Nat. Chem., 2011, 3:154.
[71] Zhao N, Lloyd G O, Scherman O A. Chem. Commun., 2012, 48:3070.
[72] Ahn Y, Jang Y, Selvapalam N, Yun G, Kim K. Angew. Chem. Int. Ed., 2013, 52:3140.
[73] Ayhan M M, Karoui H, Hardy M, Rockenbauer A, Charles L, Rosas R, Udachin K, Tordo P, Bardelang D, Ouari O. J. Am. Chem. Soc., 2015, 137:10238.
[74] Ma D, Gargulakova Z, Zavalij P Y, Sindelar V, Isaacs L. J. Org. Chem., 2010, 75:2934.
[75] Huang W H, Zavalij P Y, Isaacs L. Org. Lett., 2008, 10:2577.
[76] Cao L, Isaacs L. Org. Lett., 2012, 14:3072.
[77] Wittenberg J B, Zavalij P Y, Isaacs L. Angew. Chem. Int. Ed., 2013, 52:3690.
[78] Zhang M, Cao L, Isaacs L. Chem. Commun., 2014, 50:14756.
[79] Gilberg L, Khan M S A, Enderesova M, Sindelar V. Org. Lett., 2014, 16:2446.
[80] Cong H, Ni X L, Xiao X, Huang Y, Zhu Q J, Xue S F, Tao Z, Lindoy L F, Wei G. Org. Biomol. Chem., 2016, 14:4335.
[1] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[2] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[3] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[4] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[5] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[6] 汪含笑, 韩莹, 陈传峰*. 基于三维不对称主体的客体方向选择性穿线作用及其组装体的构建[J]. 化学进展, 2018, 30(5): 616-627.
[7] 潘梅, 韦张文, 徐耀维, 苏成勇. 配位超分子自组装[J]. 化学进展, 2017, 29(1): 47-74.
[8] 龚晚君, 赵智勇, 刘思敏*. 葫芦脲作为超分子纳米反应器/催化剂的研究[J]. 化学进展, 2016, 28(12): 1732-1742.
[9] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[10] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.
[11] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[12] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[13] 龚浩, 杨义文, 匡春香. 基于C—H键官能团化的药物合成[J]. 化学进展, 2014, 26(04): 592-608.
[14] 许良, 李勇军, 李玉良. 基于π体系的超分子功能材料的制备与应用研究[J]. 化学进展, 2014, 26(04): 487-501.
[15] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
阅读次数
全文


摘要