English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1462-1473 DOI: 10.7536/PC160305 前一篇   后一篇

• 综述与评论 •

碳纳米多孔宏观体在水体净化中的应用

李红变*   

  1. 国家纳米科学中心 北京 100190
  • 收稿日期:2016-03-01 修回日期:2016-07-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 李红变 E-mail:lihb@nanoctr.cn
  • 基金资助:
    国家自然科学基金项目(No.51202042)资助

Application of Porous Carbon Macrostructures for Water Purification

Li Hongbian*   

  1. The National Center for Nanoscience and Technology, Beijing 100190, China
  • Received:2016-03-01 Revised:2016-07-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51202042).
碳纳米多孔宏观体是指由碳纳米材料自组装形成的宏观多孔材料。该材料保持了碳纳米材料大的比表面积及化学、热稳定性,对水体中的污染物,如油污、染料分子及重金属离子等具有良好的吸附性能。此外,该类材料具有宏观结构及稳定的机械性能,方便操作,且易实现所吸附物的回收及吸附材料的再生。因此,碳纳米多孔宏观体成为碳纳米材料研究和应用的热点。本文梳理了碳纳米多孔宏观体的制备及其在水处理中的应用,包括碳纳米多孔宏观体的制备、污染物吸附及材料再生等。首先对碳纳米多孔宏观体用于水体净化的背景进行了介绍,之后,按照组成单元不同,将碳纳米多孔宏观体按照碳纳米管多孔宏观体,石墨烯多孔宏观体,碳纳米纤维多孔宏观体及碳纳米粒子多孔宏观体进行了分类。第三部分,详细介绍了制备碳纳米多孔宏观体的三种常见方法并分别讨论了各种方法的优缺点及所制备产物的性质。第四部分,按照不同污染物种类讲述了碳纳米多孔宏观体在水体净化中的应用。最后,针对碳纳米多孔宏观体在水体吸附应用中存在的问题进行了分析及展望。
Porous carbon macrostructures are blocks consisting of carbon nanostructures, for example, nanowires, nanotubes, nanosheets and nanoparticles. They inherit the large surface area of the nanostructures, which have high temperature and chemical stability, showing excellent performance in adsorption of oil, small organic molecules and ions of heavy metal in water. In addition, due to the macro-block structure with high mechanical strength, they are easy for manipulation and separation from water after use, which is beneficial for the recycling of both absorbent and adsorbate. The synthesis of carbon macrostructures and their application in water purification is a hot topic in chemistry, material sciences and environmental chemistry in recent few years. In this review, the synthesis of carbon macrostructures and their application in water purification, including filtration and adsorption, and their recycling are summarized. Firstly, the background for the need of carbon macrostructures for water purification is proposed, then, carbon macrostructures with different basic unit are discussed. In the third part, three main different methods to synthesize carbon macrostructures and their advantages and limitations are discussed separately. In the fourth part, the application of carbon macrostructures in the water purification is discussed in detail in three different aspects:for oil removal, adsorption of dye molecules and ions of heavy metal. At last, the challenges for the carbon macrostructures in the pollutant removal for water and their prospects are proposed.

Contents
1 Introduction
2 Porous carbon macrostructures for water purification
2.1 Porous carbon nanotube macrostructures
2.2 Porous graphene macrostructures
2.3 Porous carbon nanofiber macrostructures
2.4 Porous carbon nanoparticles macrostructures
3 Methods to fabricate porous carbon macrostructures
3.1 Self-assembly of carbon nanostructures in solution
3.2 Template-assisted synthesis of carbon macrostructures
3.3 Porous carbon macrostructures fabricated by chemical vapor deposition (CVD)
4 The application of porous carbon macrostructures in water purification
4.1 The application of porous carbon macrostructures for oil removal
4.2 The application of porous carbon macrostructures for dye molecule adsorption
4.3 The application of porous carbon macrostructures for removal of ions of heavy metal
5 Conclusion

中图分类号: 

()
[1] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452:301.
[2] Srinivasan A, Viraraghavan T, Bioresource Technol., 2010, 101(17):6594.
[3] Chen B, Ma Q L, Tan C L, Lim T T, Huang L, Zhang H. Small, 2015, 11(27):3319.
[4] http://ocean.si.edu/gulf-oil-spill.
[5] Mekonnen M M, Hoekstra A Y. Sci. Adv., 2016, 2:e1500323.
[6] 兰淑澄(Lan S C). 活性炭水处理技术(Activated Carbon Water Treatment Techniques), 北京:中国环境科学出版社(Beijing:China Environmental Science Press),1991.
[7] Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B. Environ. Sci. Technol., 2005, 39(5):1378.
[8] Kang S, Mauter M, Elimelech M. Environ. Sci. Technol., 2009, 43(7):2648.
[9] Holbrook R D, Kline C, Filliben J J. Environ. Sci. Technol., 2010, 44(4):1386.
[10] Li Z, Liu Z, Sun H Y, Gao C. Chem. Rev., 2015, 115:7046.
[11] Liu X T, Wang M S, Zhang S J, Pan B C. J. Environ. Sci., 2013, 25(7):1263.
[12] Aghigh A, Alizadeh V, Wong H Y, Islam M S, Amin N, Zaman M. Desalination, 2015, 365:389.
[13] Sun P Z, Wang K L, Zhu H W. Adv. Mater., 2016, 28:2287.
[14] Li Y H, Wang S G, Luan Z K, Ding J, Xu C L, Wu D H. Carbon, 2003, 41(5):1057.
[15] Li Y H, Ding J, Luan Z K, Di Z C, Zhu Y F, Xu C L, Wu D H, Wei B Q. Carbon, 2003, 41(14):2787.
[16] Moradi O, Zare K, Monajjemi M, Yari M, Aghaie H. Fuller. Carbontub. Car. N., 2010, 18(3):285.
[17] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[18] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.
[19] Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10):3498.
[20] Nardecchia S, Carriazo D, Ferrer M L, Gutiérrez M C, Monte F. Chem. Soc. Rev., 2013, 42:794.
[21] Fang Q L, Shen Y, Chen B L. Chem. Eng. J., 2015, 264:753.
[22] Liang H W, Guan Q F, Chen L F, Zhu Z, Zhang W J, Yu S H. Angew. Chem. Int. Ed., 2012, 51:5101.
[23] Dai W, Kim S J, Seong W K, Kim S H, Lee K R, Kim H Y, Moon M W. Sci. Rep., 2013, 3:2524.
[24] Bryning M B, Milkie D E, Islam M F, Hough L A, Kikkawa J M, Yodh A G. Adv. Mater., 2007, 19:661.
[25] Zou J H, Liu J H, Karakoti A S, Kumar A, Joung D, Li Q, Khondaker S I, Seal S, Zhai L. ACS Nano, 2010, 4(12):7293.
[26] Chen J, Zhao M G, Li Y C, Liang J J, Fan S S, Chen S G. Ceram. Int., 2015, 41:15241.
[27] Xu Y X, Sheng K X, Li C, Shi G C. ACS Nano, 2010, 4(7):4324.
[28] Sheng K X, Xu Y X, Li C, Shi G Q. New Carbon Mater., 2011, 26(1):9.
[29] Xu Y X, Lin Z Y, Huang X Q, Liu Y, Huang Y, Duan X F. ACS Nano, 2013, 7(5):4042.
[30] Jiang X, Yang X L, Zhu Y H, Jiang H L, Yao Y F, Zhao P, Li C Z. J. Mater. Chem. A, 2014, 2:11124.
[31] Henriquesa B, Goncalves G, Emamie N, Pereira E, Vila M, Marquesb P A P. J. Hazard. Mater., 2016, 301:453.
[32] Du R, Zhang N, Zhu J H, Wang Y, Xu C Y, Hu Y, Mao N N, Xu H, Duan W J, Zhuang L, Qu L T, Hou Y L, Zhang J. Small, 2015, 11(32):3903.
[33] Hou P X, Liu C, Shi C, Cheng H M. Chin. Sci. Bull., 2012, 57(2/3):187.
[34] Park S H, Kim K H, Roh K C, Kim K B. J. Porous Mater., 2013, 20:1289.
[35] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10:424.
[36] Kim B J, Yang G, Park M J, Kwak J S, Baik K H, Kim D, Kim J. Appl. Phys. Lett., 2013, 102:161902.
[37] Gui X C, Wei J Q, Wang K L, Cao A Y, Zhu H W, Jia Y, Shu Q K, Wu D H. Adv. Mater., 2010, 22:617.
[38] Xu M, Futaba D N, Yamada T, Yumura M, Hata K. Science, 2010, 330:1364.
[39] Hashim D P, Narayanan N T, Romo-Herrera J M, Cullen D A, Hahm M G, Lezzi P, Suttle J R, Kelkhoff D, Munõz-Sandoval E, Ganguli S, Roy A K, Smith D J, Vajtai R, Sumpter B J, Meunier V, Terrones H, Terrones M, Ajayan P M. Sci. Rep., 2012, 2:363.
[40] Shan C S, Zhao W J, Lu X L, O'Brien D J, Li Y P, Cao Z Y, Elias A L, Cruz-Silva R, Terrones M, Wei B Q, Suhr J. Nano Lett., 2013, 13:5514.
[41] Fernández-Á lvarez P, Vila J, Garrido-Fernández J M, Grifoll M, Lema J M. J. Hazard. Mater., 2006, B137:1523.
[42] Keshavarz A, Zilouei H, Abdolmaleki A, Asadinezhad A. J. Environ. Manag., 2015, 157:279e286.
[43] Gao Y, Zhou Y S, Xiong W, Wang M M, Fan L S, Rabiee-Golgir H, Jiang L J, Hou W J, Huang X, Jiang L, Silvain J F, Lu Y F. ACS Appl. Mater. Interfaces, 2014, 6:5924.
[44] Gui X C, Li H B, Wang K L, Wei J Q, Jia Y, Li Z, Fan L L, Cao A Y, Zhu H W, Wu D H. Acta Mater., 2011, 59:4798.
[45] Gui X C, Zeng Z P, Lin Z Q, Gan Q M, Xiang R, Zhu Y, Cao A Y, Tang Z K. ACS Appl. Mater. Interfaces, 2013, 5:5845.
[46] Camilli L, Pisani C, Gautron E, Scarselli M, Castrucci P, D'Orazio F, Passacantando M, Moscone D, Crescenzi M D. Nanotechnology, 2014, 25:065701
[47] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M. ACS Nano, 2010, 4:4806.
[48] Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S. Adv. Funct. Mater., 2012, 22:4421.
[49] Chakravarty D, Tiwary C S, Machado L D, Brunetto G, Vinod S, Yadav R M, Galvao D S, Joshi S V, Sundararajan G, Ajayan P M. Adv. Mater., 2015, 27:4534.
[50] Sun H Y, Xu Z, Gao C. Adv. Mater., 2013, 25:2554.
[51] Hu H, Zhao Z B, Gogotsi Y, Qiu J S. Environ. Sci. Technol. Lett., 2014, 1:214.
[52] Zhao Y, Hu C G, Hu Y, Cheng H H, Shi G Q, Qu L T. Angew. Chem., 2012, 124:11533.
[53] Zhai P, Jia H M, Zheng Z Y, Lee C C, Su H J, Wei T C, Feng S P. Adv. Mater. Interfaces, 2015, 2:1500243.
[54] Tran D N H, Kabiri S, Sim T R, Losic D. Environ. Sci.:Water Res. Technol., 2015, 1:298.
[55] Kabiri S, Tran D N H, Altalhi T, Losic D. Carbon, 2014, 80:523.
[56] Wu Z Y, Li C, Liang H W, Zhang Y N, Wang X, Chen J F, Yu S H. Sci. Rep., 2014, 4:4079.
[57] Wang B, Karthikeyan R, Lu X Y, Xuan J, Leung M K H. Ind. Eng. Chem. Res., 2013, 52:18251.
[58] Bi H C, Huang X, Wu X, Cao X H, Tan C L, Yin Z Y, Lu X H, Sun L T, Zhang H. Small, 2014, 10(17):3544.
[59] Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P. Chem. Mater., 2014, 26:2659.
[60] Wan C C, Lu Y, Jiao Y, Jin C D, Sun Q F, Li J. J. Appl. Polym. Sci. 2015, DOI:10.1002/APP.42037.
[61] Wang Y G, Yadav S, Heinlein T, Konjik V, Breitzke H, Buntkowsky G, Schneider J J, Zhang K. RSC Adv., 2014, 4:21553.
[62] Li H B, Gui X C, Zhang L H, Wang S S, Ji C Y, Wei J Q,Wang K L, Zhu H W, Wu D H, Cao A Y. Chem. Commun., 2010, 46:7966.
[63] Jayanthi S, Eswar N K R, Singh S A, Chatterjee K, Madras G, Soodd A K. RSC Adv., 2016, 6:1231.
[64] Liu F, Chung S, Oh G, Seo T S. ACS Appl. Mater. Interfaces, 2012, 4:922.
[65] Chen Y Q, Chen L B, Bai H, Li L. J. Mater. Chem. A, 2013, 1:1992.
[66] Gao H C, Sun Y M, Zhou J J, Xu R, Duan H W. ACS Appl. Mater. Interfaces, 2013, 5:425.
[67] Yang Y M, Hu G W, Chen F J, Liu J, Liu W S, Zhang H L, Wang B D. Chem. Commun., 2015, 51:14405.
[68] Feng B, Xu X Y, Xu W, Zhou G, Hu J G, Wang Y L, Bao Z J. Mater. Design, 2015, 83:522.
[69] Brewer G J. Front Aging Neurosci., 2014, 6.
[70] Lu X, Huangfu X L, Ma J. J. Hazard. Mater., 2014, 280:71.
[71] Lei Y L, Chen F, Luo Y J, Zhang L. Chem. Phys. Lett., 2014, 593:122.
[72] Chen G Q, Liu Y X, Liu F, Zhang X. Appl. Surf. Sci., 2014, 311:808.
[73] Ye Y, Yin D, Wang B, Zhang Q W. J. Nanomater., 2015, 864864.
[74] Andjelkovic I, Tran D N H, Kabiri S, Azari S, Markovic M, Losic D. ACS Appl. Mater. Interfaces, 2015, 7:9758.
[75] Kabiri S, Tran D N H, Azari S, Losic D. ACS Appl. Mater. Interfaces, 2015, 7:11815.
[76] Huang H, Chen P W, Zhang X T, Lu Y, Zhan W C. Small, 2013, 9(8):1397.
[77] Sun H Y, Xu Z, Gao C. Adv. Mater., 2013, 25:2554.
[78] Zhu C H, Lu Y, Peng J, Chen J F, Yu S H. Adv. Funct. Mater., 2012, 22:4017.
[79] Ye S B, Feng J C, Wu P Y. J. Mater. Chem. A, 2013, 1:3495.
[80] Cheng Q Y, Zhou D, Gao Y, Chen Q, Zhang Z, Han B H. Langmuir, 2012, 28:3005.
[81] Xu Y X, Wu Q, Sun Y Q, Bai H, Shi G Q. ACS Nano, 2010, 4(12):7358.
[82] Huang C C, Bai H, Li C, Shi G Q. Chem. Commun., 2011, 47:4962.
[83] Wang Z Y, Hu G W, Liu J, Liu W S, Zhang H L, Wang B D. Chem. Commun., 2015, 51:5069.
[84] Fang Q L, Chen B L. J. Mater. Chem. A, 2014, 2:8941.
[85] Tan L C, Wang Y L, Liu Q, Wang J, Jing X Y, Liu L H, Liu J Y, Song D L. Chem. Eng. J., 2015, 259:752.
[86] Jiang X, Ma Y W, Li J J, Fan Q L, Huang W. J. Phys. Chem. C, 2010, 114:22462.
[87] Cong H P, Ren X C, Wang P, Yu S H. ACS Nano, 2012, 6(3):2693.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[5] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[8] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[9] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[10] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[11] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[12] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[15] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.