English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 975-992 DOI: 10.7536/PC160210 前一篇   后一篇

• 综述与评论 •

新型烯桥二芳基乙烯光致变色体系

朱世琴1, 李文龙2, 朱为宏2*   

  1. 1. 华东理工大学 科技信息研究所 上海 200237;
    2. 华东理工大学 精细化工研究所 上海 200237
  • 收稿日期:2016-02-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 朱为宏 E-mail:whzhu@ecust.edu.cn
  • 基金资助:
    国家自然科学杰出青年基金项目(No.21325625)和国家自然科学基金项目(No.21476076)资助

Photochromic Diarylethenes Based on Novel Ethene Bridges

Zhu Shiqin1, Li Wenlong2, Zhu Weihong2*   

  1. 1. Institute of Science and Technology Information, East China University of Science & Technology, Shanghai 200237, China;
    2. Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, China
  • Received:2016-02-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the NSFC for Distinguished Young Scholars (No.21325625) and the National Natural Science Foundation of China (No.21476076).
光致变色材料在一定的波长和强度的光作用下分子结构发生开闭环等变化,从而导致其对光的吸收峰(即颜色)的相应改变,且这种改变一般是可逆的。光致变色体系在光照前后的物理、化学性能(特别是吸收、荧光性质)会发生显著变化,可广泛应用于变色眼镜、光开关、逻辑门以及信息存储等领域。在众多光致变色体系中,有机二芳基乙烯体系具有高热稳定性,一直是应用研究的热门对象。由于全氟环戊烯作为烯桥具有突出的抗疲劳度、双稳态性能,目前大多数二芳基乙烯皆基于此烯桥而设计制备。鉴于二芳基乙烯的烯桥处于光反应中心,对光致变色性能调控尤为显著,而全氟环戊烯作为烯桥在结构上惰性而难以实现化学修饰,因而近年来涌现出许多新型的桥连,实现了更好的性能和更多的应用,本文介绍具有代表性的烯桥及其对应的二芳基乙烯化合物的研究现状,并对其应用前景进行了分析及展望。
Photochromic materials exhibit light-induced color change essentially due to the reversible structure change such as ring-open to ring-closed states upon photoirradiation, resulting in the distinct difference in photo-induced chemical reactions/physical properties. These photochromic properties have attracted much attention on the applications of ophthalmic lenses, photo-switches, molecular actuators, logic gates, and information storages. Among various photochromic systems, organic diarylethenes have become increasing interest because of their high thermal stability. Particularly, the ethene bridge with perfluorocyclopentene can bring excellent fatigue resistance and bistability to the diarylethene family, thereby nowadays it is adopted for developing diarylethene derivatives. The ethene bridges have very great effects on photochromic properties since they are located exactly in the photoreaction center. Given the difficulty in structurally modifying the classic ethene bridge of perfluorocyclopentene owing to its chemical inertness, several other ethene bridges have emerged to achieve higher performance and more applications. This review covers the latest research progresses on the important ethene bridges and their corresponding diarylethene derivatives, and their application prospects.

Contents
1 Introduction
2 Five-membered-ring bridges
2.1 Cyclopentene derivative bridges
2.2 Thiophene derivative bridges
2.3 Thiazole derivative bridges
2.4 Imidazole derivative bridges
2.5 Other five-membered-ring bridges
3 Six-membered-ring bridges
3.1 Non-aromatic bridges
3.2 Aromatic bridges
4 Miscellaneous bridges
5 Conclusion and outlook

中图分类号: 

()
[1] Hirshberg Y. J. Am. Chem. Soc., 1956, 78:2304.
[2] Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420:759.
[3] Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Nature, 2007, 446:778.
[4] Andreasson J, Pischel U, Straight S D, Moore T A, Moore A L, Gust D. J. Am. Chem. Soc., 2011, 133:11641.
[5] 邹祺(Zou Q), 张隽佶(Zhang J J), 田禾(Tian H). 化学进展(Prog. Chem.), 2012, 24:1632.
[6] Orgiu E, Crivillers N, Herder M, Grubert L, Patzel M, Frisch J, Pavlica E, Duong D T, Bratina G, Salleo A, Koch N, Hecht S, Samori P. Nat. Chem., 2012, 4:675.
[7] Gemayel M E, Borjesson K, Herder M, Duong D T, Hutchison J A, Ruzie C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samori P. Nat. Commun., 2015, 6:6330.
[8] 李倩倩(Li Q Q), 李振(Li Z), 秦金贵(Qin J G). 化学进展(Prog. Chem.), 2009, 21:2578.
[9] Dugave C, Demange L. Chem. Rev., 2003, 103:2475.
[10] Yokoyama Y. Chem. Rev., 2000, 100:1717.
[11] Irie M. Chem. Rev., 2000, 100:1685.
[12] Irie M, Fukaminato T, Matsuda K, Kobatake S. Chem. Rev., 2014, 114:12174.
[13] Tian H, Yang S. Chem. Soc. Rev., 2004, 33:85.
[14] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M. J. Am. Chem. Soc., 2011, 133:4984.
[15] Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M. J. Am. Chem. Soc., 2014, 136:17145.
[16] Hanazawa M, Sumiya R, Horikawa Y, Irie M. J. Chem. Soc., Chem. Commun., 1992:206.
[17] Chen Y, Zeng D X, Xie N, Dang Y Z. J. Org. Chem., 2005, 70:5001.
[18] Chen Y, Zeng D X, Fan M G. Org. Lett., 2003, 5:1435.
[19] Krayushkin M M, Yarovenko V N, Semenov S L, Zavarzin I V, Ignatenko V, Martynkin A Y, Uzhinov B M. Org. Lett., 2002, 4:3879.
[20] de Jong J J D, Lucas L N, Hania R, Pugzlys A, Kellogg R M, Feringa B L, Duppen K, van Esch J H. Eur. J. Org. Chem., 2003, 2003:1887.
[21] Gostl R, Kobin B, Grubert L, Patzel M, Hecht S. Chem. Eur. J., 2012, 18:14282.
[22] Fredersdorf M, Gostl R, Kolmer A, Schmidts V, Monecke P, Hecht S, Thiele C M. Chem.-Eur. J., 2015, 21:14545.
[23] Shirinian V Z, Lvov A G, Krayushkin M M, Lubuzh E D, Nabatov B V. J. Org. Chem., 2014, 79:3440.
[24] Lonshakov D V, Shirinian V Z, Lvov A G, Nabatov B V, Krayushkin M M. Dyes Pigm., 2013, 97:311.
[25] Morinaka K, Ubukata T, Yokoyama Y. Org. Lett., 2009, 11:3890.
[26] Ogawa H, Takagi K, Ubukata T, Okamoto A, Yonezawa N, Delbaere S, Yokoyama Y. Chem. Commun., 2012, 48:11838.
[27] Fukumoto S, Nakagawa T, Kawai S, Nakashima T, Kawai T. Dyes Pigm., 2011, 89:297.
[28] Kobatake S, Uchida K, Tsuchida E, Irie M. Chem. Commun., 2002, 23:2804.
[29] Kawai T, Iseda T, Irie M. Chem. Commun., 2004, 1:72.
[30] Poon C T, Lam W H, Wong H L, Yam V W W. J. Am. Chem. Soc., 2010, 132:13992.
[31] Poon C T, Lam W H, Wong H L, Yam V W W. Chem.-Eur. J., 2015, 21:2182.
[32] Poon C T, Lam W H, Yam V W W. J. Am. Chem. Soc., 2011, 133:19622.
[33] Pang S C, Hyun H, Lee S, Jang D, Lee M J, Kang S H, Ahn K H. Chem. Commun., 2012, 48:3745.
[34] Hell S W. Sci., 2007, 316:1153.
[35] Rust M J, Bates M, Zhuang X W. Nat. Methods, 2006, 3:793.
[36] Chan J C H, Lam W H, Wong H L, Wong W T, Yam V W W. Angew. Chem. Int. Ed., 2013, 52:11504.
[37] Chan J C H, Wong H L, Wong W T, Yam V W W. Chem.-Eur. J., 2015, 21:6936.
[38] Ko C C, Lam W H, Wing-Wah Yam V. Chem. Commun., 2008:5203.
[39] Wong H L, Ko C C, Lam W H, Zhu N, Yam V W W. Chem.-Eur. J., 2009, 15:10005.
[40] Chan J C H, Lam W H, Wong H L, Zhu N, Wong W T, Yam V W W. J. Am. Chem. Soc., 2011, 133:12690.
[41] Wong H, Wong W, Yam V W. Org. Lett., 2012, 14:1862.
[42] Fukumoto S, Nakashima T, Kawai T. Angew. Chem. Int. Ed., 2011, 50:1565.
[43] Fukumoto S, Nakashima T, Kawai T. Eur. J. Org. Chem., 2011, 2011:5047.
[44] Li X, Ma Y, Wang B, Li G. Org. Lett., 2008, 10:3639.
[45] Jeong Y C, Yang S I, Kim E, Ahn K H. Tetrahedron, 2006, 62:5855.
[46] Chen S, Yang Y, Wu Y, Tian H, Zhu W. J. Mater. Chem., 2012, 22:5486.
[47] Chen S J, Chen L J, Yang H B, Tian H, Zhu W H. J. Am. Chem. Soc., 2012, 134:13596.
[48] Wu Y, Chen S, Yang Y, Zhang Q, Xie Y, Tian H, Zhu W. Chem. Commun., 2012, 48:528.
[49] Wu Y, Zhu W, Wan W, Xie Y, Tian H, Li A D Q. Chem. Commun., 2014, 50:14205.
[50] Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li A D Q. Angew. Chem. Int. Ed., 2014, 53:2090.
[51] Kutsunugi Y, Kawai S, Nakashima T, Kawai T. New J. Chem., 2009, 6:1368.
[52] Kawai S, Nakashima T, Atsumi K, Sakai T, Harigai M, Imamoto Y, Kamikubo H, Kataoka M, Kawai T. Chem. Mater., 2007, 19:3479.
[53] Nakashima T, Atsumi K, Kawai S, Nakagawa T, Hasegawa Y, Kawai T. Eur. J. Org. Chem., 2007, 19:3212.
[54] Nakashima T, Kajiki Y, Fukumoto S, Taguchi M, Nagao S, Hirota S, Kawai T. J. Am. Chem. Soc., 2012, 134:19877.
[55] Nakagawa T, Atsumi K, Nakashima T, Hasegawa Y, Kawai T. Chem. Lett., 2007, 36:372.
[56] Gavrel G, Yu P, Leaustic A, Guillot R, Metivier R, Nakatani K. Chem. Commun., 2012, 48:10111.
[57] Nakashima T, Yamamoto K, Kimura Y, Kawai T. Chem.-Eur. J., 2013, 19:16972.
[58] Nakashima T, Fujii R, Kawai T. Chem.-Eur. J., 2011, 17:10951.
[59] Nakagawa H, Kawai S, Nakashima T, Kawai T. Org. Lett., 2009, 11:1475.
[60] Nakashima T, Tsuchie K, Kanazawa R, Li R, Iijima S, Galangau O, Nakagawa H, Mutoh K, Kobayashi Y, Abe J, Kawai T. J. Am. Chem. Soc., 2015, 137:7023.
[61] Liu H H, Chen Y. New J. Chem., 2012, 36:2223.
[62] Liu H H, Chen Y. J. Phys. Org. Chem., 2012, 25:142.
[63] Liu H H, Chen Y. J. Phys. Chem. A, 2009, 113:5550.
[64] Liu H H, Chen Y. Tetrahedron, 2013, 69:1872.
[65] Liu H H, Chen Y. J. Phys. Org. Chem., 2012, 25:142.
[66] Cao D K, Wei R H, Li X X, Gu Y W. Dalton Trans., 2015, 44:5755.
[67] Cao D K, Feng J Q, Ren M, Gu Y W, Song Y, Ward M D. Chem. Commun., 2013, 49:8863.
[68] Wei R H, Chen J F, Feng J Q, Hu J S, Cao D K. RSC Adv., 2015, 5:14359.
[69] Lee P H M, Ko C C, Zhu N, Yam V W W. J. Am. Chem. Soc., 2007, 129:6058.
[70] Nakashima T, Goto M, Kawai S, Kawai T. J. Am. Chem. Soc., 2008, 130:14570.
[71] Neilson B M, Bielawski C W. J. Am. Chem. Soc., 2012, 134:12693.
[72] Teator A J, Tian Y, Chen M, Lee J K, Bielawski C W. Angew. Chem. Int. Ed., 2015, 54:11559.
[73] Yam V W W, Lee J K W, Ko C C, Zhu N. J. Am. Chem. Soc., 2009, 131:912.
[74] Wu T Q, Tang H, Bohne C, Branda N R. Angew. Chem. Int. Ed., 2012, 51:2741.
[75] Chan J C H, Lam W H, Yam V W W. J. Am. Chem. Soc., 2014, 136:16994.
[76] Uchida K, Masuda G, Aoi Y, Nakayama K, Irie M. Chem. Lett., 1999, 28:1071.
[77] Lemieux V, Spantulescu M D, Baldridge K K, Branda N R. Angew. Chem. Int. Ed., 2008, 47:5034.
[78] Lemieux V, Branda N R. Org. Lett., 2005, 7:2969.
[79] Lemieux V, Gauthier S, Branda N R. Angew. Chem. Int. Ed., 2006, 45:6820.
[80] Tannouri P, Arafeh K M, Krahn J M, Beaupre S L, Menon C, Branda N R. Chem. Mater., 2014, 26:4330.
[81] Asadirad A M, Branda N R. J. Am. Chem. Soc., 2015, 137:2824.
[82] Deng X, Liebeskind L S. J. Am. Chem. Soc., 2001, 123:7703.
[83] Kose M, ?ekerci Ç Y, Suzuki K, Yokoyama Y. J. Photochem. Photobiol. A, 2011, 219:58.
[84] Suzuki K, Ubukata T, Yokoyama Y. Chem. Commun., 2012, 48:765.
[85] Meng X, Zhu W, Zhang Q, Feng Y, Tan W, Tian H. J. Phys. Chem. B, 2008, 112:15636.
[86] Zhu W, Song L, Yang Y, Tian H. Chem.-Eur. J., 2012, 18:13388.
[87] Zhu W H, Meng X L, Yang Y H, Zhang Q, Xie Y S, Tian H. Chem.-Eur. J., 2010, 16:899.
[88] Zhu W, Yang Y, Metivier R, Zhang Q, Guillot R, Xie Y, Tian H, Nakatani K. Angew. Chem. Int. Ed., 2011, 50:10986.
[89] Yang Y, Xie Y, Zhang Q, Nakatani K, Tian H, Zhu W. Chem.-Eur. J., 2012, 18:11685.
[90] Yam V W W, Ko C C, Zhu N. J. Am. Chem. Soc., 2004, 126:12734.
[91] Ngan T W, Ko C C, Zhu N, Yam V W W. Inorg. Chem., 2007, 46:1144.
[92] Lee J K W, Ko C C, Wong K M C, Zhu N, Yam V W W. Organometallics, 2007, 26:12.
[93] R sner B, Milek M, Witt A, Gobaut B, Torelli P, Fink R H, Khusniyarov M M. Angew. Chem. Int. Ed., 2015, 54:12976.
[94] He J J, Wang T T, Chen S X, Zheng R P, Chen H Y, Li J, Zeng H P. J. Photochem. Photobiol. A, 2014, 277:45.
[95] He J J, He J X, Wang T T, Zeng H P. J. Mater. Chem. C, 2014, 2:7531.
[96] Patel D G, Walton I M, Cox J M, Gleason C J, Butzer D R, Benedict J B. Chem. Commun., 2014, 50:2653.
[97] Walko M, Feringa B L. Chem. Commun., 2007:1745.
[98] Li W, Cai Y, Li X, Agren H, Tian H, Zhu W H. J. Mater. Chem. C, 2015, 3:8665.
[99] Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W. Angew. Chem. Int. Ed., 2014, 53:4603.
[100] Li W, Li X, Xie Y, Wu Y, Li M, Wu X Y, Zhu W H, Tian H. Sci. Rep., 2015, 5:9186.
[101] Kühni J, Belser P. Org. Lett., 2007, 9:1915.
[102] Kitai J i, Kobayashi T, Uchida W, Hatakeyama M, Yokojima S, Nakamura S, Uchida K. J. Org. Chem., 2012, 77:3270.
[103] Sud D, Wigglesworth T J, Branda N R. Angew. Chem. Int. Ed., 2007, 46:8017.
[104] Tian H, Chen B, Tu H Y, Müllen K. Adv. Mater., 2002, 14:918.
[105] Y J, Chen Z, Xiang J, Zhang F. Langmuir, 2011, 27:8061.
[106] Mao Y Y, Liu K Y, Lv G L, Wen Y, Zhu X J, Lan H C, Yi T. Chem. Commum., 2015, 51:6667.
[107] Liu K Y, Wen Y, Shi T, Li Y, Li F Y, Zhao Y L, Huang C H, Yi T. Chem. Commum. 2014, 50:9141.
[108] Liu W J, Hu F, Chen Z M, Li Z Y, Yin J, Yu G A, Liu S H. Dyes Pigm., 2015, 115:190.06.
[17] Chen Y, Zeng D X, Xie N, Dang Y Z. J. Org. Chem., 2005, 70: 5001.
[18] Chen Y, Zeng D X, Fan M G. Org. Lett., 2003, 5: 1435.
[19] Krayushkin M M, Yarovenko V N, Semenov S L, Zavarzin I V, Ignatenko V, Martynkin A Y, Uzhinov B M. Org. Lett., 2002, 4: 3879.
[20] Jong Jaap J D d, Lucas Linda N, Hania R, Pugzlys A, Kellogg Richard M, Feringa Ben L, Duppen K, Esch Jan H v. Eur. J. Org. Chem., 2003, 2003: 1887.
[21] Gostl R, Kobin B, Grubert L, Patzel M, Hecht S. Chem. Eur. J., 2012, 18: 14282.
[22] Fredersdorf M, Gostl R, Kolmer A, Schmidts V, Monecke P, Hecht S, Thiele C M. Chem. Eur. J., 2015, 21: 14545.
[23] Shirinian V Z, Lvov A G, Krayushkin M M, Lubuzh E D, Nabatov B V. J. Org. Chem., 2014, 79: 3440.
[24] Lonshakov D V, Shirinian V Z, Lvov A G, Nabatov B V, Krayushkin M M. Dyes Pigm., 2013, 97: 311.
[25] Morinaka K, Ubukata T, Yokoyama Y. Org. Lett., 2009, 11: 3890.
[26] Ogawa H, Takagi K, Ubukata T, Okamoto A, Yonezawa N, Delbaere S, Yokoyama Y. Chem. Commun., 2012, 48: 11838.
[27] Fukumoto S, Nakagawa T, Kawai S, Nakashima T, Kawai T. Dyes Pigm., 2011, 89: 297.
[28] Kobatake S, Uchida K, Tsuchida E, Irie M. Chem. Commun., 2002: 2804.
[29] Kawai T, Iseda T, Irie M. Chem. Commun., 2004: 72.
[30] Poon C-T, Lam W H, Wong H-L, Yam V W-W. J. Am. Chem. Soc., 2010, 132: 13992.
[31] Poon C-T, Lam W H, Wong H-L, Yam V W-W. Chem. Eur. J., 2015, 21: 2182.
[32] Poon C-T, Lam W H, Yam V W-W. J. Am. Chem. Soc., 2011, 133: 19622.
[33] Pang S-C, Hyun H, Lee S, Jang D, Lee M J, Kang S H, Ahn K-H. Chem. Commun., 2012, 48: 3745.
[34] Hell S W. Science, 2007, 316: 1153.
[35] Rust M J, Bates M, Zhuang X W. Nat. Methods, 2006, 3: 793.
[36] Chan J C-H, Lam W H, Wong H-L, Wong W-T, Yam V W-W. Angew. Chem. Int. Ed., 2013, 52: 11504.
[37] Chan J C-H, Wong H-L, Wong W-T, Yam V W-W. Chem. Eur. J., 2015, 21: 6936.
[38] Ko C-C, Lam W H, Wing-Wah Yam V. Chem. Commun., 2008: 5203.
[39] Wong H-L, Ko C-C, Lam W H, Zhu N, Yam V W-W. Chem. Eur. J., 2009, 15: 10005.
[40] Chan J C-H, Lam W H, Wong H-L, Zhu N, Wong W-T, Yam V W-W. J. Am. Chem. Soc., 2011, 133: 12690.
[41] Wong H, Wong W, Yam V W. Org. Lett., 2012, 14: 1862.
[42] Fukumoto S, Nakashima T, Kawai T. Angew. Chem. Int. Ed., 2011, 50: 1565.
[43] Fukumoto S, Nakashima T, Kawai T. Eur. J. Org. Chem., 2011, 2011: 5047.
[44] Xiaochuan L, Yuzhen M, Bingcai W, Gongan L. Org. Lett., 2008, 10: 3639.
[45] Jeong Y C, Yang S I, Kim E, Ahn K H. Tetrahedron, 2006, 62: 5855.
[46] Chen S, Yang Y, Wu Y, Tian H, Zhu W. J. Mater. Chem., 2012, 22: 5486.
[47] Chen S J, Yang Y H, Wu Y, Tian H, Zhu W H. J. Mater. Chem., 2012, 22: 5486.
[48] Yue W, Shangjun C, Yuheng Y, Qiong Z, Yongshu X, He T, Weihong Z. Chem. Commun., 2011, 48: 528.
[49] Wu Y, Zhu W, Wan W, Xie Y, Tian H, Li A D Q. Chem. Commun., 2014, 50: 14205.
[50] Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li A D Q. Angew. Chem. Int. Ed., 2014, 53: 2090.
[51] Kutsunugi Y, Kawai S, Nakashima T, Kawai T. New J. Chem., 2009, 6: 1368.
[52] Kawai S, Nakashima T, Atsumi K, Sakai T, Harigai M, Imamoto Y, Kamikubo H, Kataoka M, Kawai T. Chem. Mater., 2007, 19: 3479.
[53] Nakashima T, Atsumi K, Kawai S, Nakagawa T, Hasegawa Y, Kawai T. Eur. J. Org. Chem., 2007, 2007: 3212.
[54] Nakashima T, Kajiki Y, Fukumoto S, Taguchi M, Nagao S, Hirota S, Kawai T. J. Am. Chem. Soc., 2012, 134: 19877.
[55] Nakagawa T, Atsumi K, Nakashima T, Hasegawa Y, Kawai T. Chem. Lett., 2007, 36: 372.
[56] Gavrel G, Yu P, Leaustic A, Guillot R, Metivier R, Nakatani K. Chem. Commun., 2012, 48: 10111.
[57] Nakashima T, Yamamoto K, Kimura Y, Kawai T. Chem. Eur. J., 2013, 19: 16972.
[58] Nakashima T, Fujii R, Kawai T. Chem. Eur. J., 2011, 17: 10951.
[59] Nakagawa H, Kawai S, Nakashima T, Kawai T. Org. Lett., 2009, 11: 1475.
[60] Nakashima T, Tsuchie K, Kanazawa R, Li R, Iijima S, Galangau O, Nakagawa H, Mutoh K, Kobayashi Y, Abe J, Kawai T. J. Am. Chem. Soc., 2015, 137: 7023.
[61] Liu H H, Chen Y. New J. Chem., 2012, 36: 2223.
[62] Liu H H, Chen Y. J. Phys. Org. Chem., 2012, 25: 142.
[63] Liu H H, Chen Y. J. Phys. Chem. A, 2009, 113: 5550.
[64] Liu H-H, Chen Y. Tetrahedron, 2013, 69: 1872.
[65] Liu H-H, Chen Y. J. Phys. Org. Chem., 2012, 25: 142.
[66] Cao D-K, Wei R-H, Li X-X, Gu Y-W. Dalton Trans., 2015, 44: 5755.
[67] Cao D-K, Feng J-Q, Ren M, Gu Y-W, Song Y, Ward M D. Chem. Commun., 2013, 49: 8863.
[68] Wei R-H, Chen J-F, Feng J-Q, Hu J-S, Cao D-K. RSC Adv., 2015, 5: 14359.
[69] Lee P H-M, Ko C-C, Zhu N, Yam V W-W. J. Am. Chem. Soc., 2007, 129: 6058.
[70] Nakashima T, Goto M, Kawai S, Kawai T. J. Am. Chem. Soc., 2008, 130: 14570.
[71] Neilson B M, Bielawski C W. J. Am. Chem. Soc., 2012, 134: 12693.
[72] Teator A J, Tian Y, Chen M, Lee J K, Bielawski C W. Angew. Chem. Int. Ed., 2015, 54: 11559.
[73] Yam V W-W, Lee J K-W, Ko C-C, Zhu N. J. Am. Chem. Soc., 2009, 131: 912.
[74] Wu T Q, Tang H, Bohne C, Branda N R. Angew. Chem. Int. Ed., 2012, 51: 2741.
[75] Chan J C-H, Lam W H, Yam V W-W. J. Am. Chem. Soc., 2014, 136: 16994.
[76] Uchida K, Masuda G, Aoi Y, Nakayama K, Irie M. Chem. Lett., 1999, 28: 1071.
[77] Lemieux V, Spantulescu M D, Baldridge K K, Branda N R. Angew. Chem. Int. Ed., 2008, 47: 5034.
[78] Lemieux V, Branda N R. Org. Lett., 2005, 7: 2969.
[79] Lemieux V, Gauthier S, Branda N R. Angewandte Chemie-International Edition, 2006, 45: 6820.
[80] Tannouri P, Arafeh K M, Krahn J M, Beaupre S L, Menon C, Branda N R. Chem. Mater., 2014, 26: 4330.
[81] Asadirad A M, Branda N R. J. Am. Chem. Soc., 2015, 137: 2824.
[82] Deng X, Liebeskind L S. J. Am. Chem. Soc., 2001, 123: 7703.
[83] Kose M, ?ekerci Ç Y, Suzuki K, Yokoyama Y. J. Photochem. Photobiol. A, 2011, 219: 58.
[84] Suzuki K, Ubukata T, Yokoyama Y. Chem. Commun., 2012, 48: 765.
[85] Meng X, Zhu W, Zhang Q, Feng Y, Tan W, Tian H. J. Phys. Chem. B, 2008, 112: 15636.
[86] Zhu W, Song L, Yang Y, Tian H. Chem. Eur. J., 2012, 18: 13388.
[87] Zhu W H, Meng X L, Yang Y H, Zhang Q, Xie Y S, Tian H. Chemistry - a European Journal, 2010, 16: 899.
[88] Zhu W, Yang Y, Metivier R, Zhang Q, Guillot R, Xie Y, Tian H, Nakatani K. Angew. Chem. Int. Ed., 2011, 50: 10986.
[89] Yang Y, Xie Y, Zhang Q, Nakatani K, Tian H, Zhu W. Chem. Eur. J., 2012, 18: 11685.
[90] Yam V W-W, Ko C-C, Zhu N. J. Am. Chem. Soc., 2004, 126: 12734.
[91] Ngan T-W, Ko C-C, Zhu N, Yam V W-W. Inorg. Chem., 2007, 46: 1144.
[92] Lee J K-W, Ko C-C, Wong K M-C, Zhu N, Yam V W-W. Organometallics, 2007, 26: 12.
[93] Rösner B, Milek M, Witt A, Gobaut B, Torelli P, Fink R H, Khusniyarov M M. Angew. Chem. Int. Ed., 2015, 54: 12976.
[94] He J J, Wang T T, Chen S X, Zheng R P, Chen H Y, Li J, Zeng H P. J. Photochem. Photobiol. A, 2014, 277: 45.
[95] He J J, He J X, Wang T T, Zeng H P. J. Mater. Chem. C, 2014, 2: 7531.
[96] Patel D G, Walton I M, Cox J M, Gleason C J, Butzer D R, Benedict J B. Chem. Commun., 2014, 50: 2653.
[97] Walko M, Feringa B L. Chem. Commun., 2007: 1745.
[98] Li W, Cai Y, Li X, Agren H, Tian H, Zhu W-H. J. Mater. Chem. C, 2015, 3: 8665.
[99] Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W. Angew. Chem. Int. Ed., 2014, 53: 4603.
[100] Li W, Li X, Xie Y, Wu Y, Li M, Wu X-Y, Zhu W-H, Tian H. Sci. Rep., 2015, 5: 9186.
[101] Kühni J, Belser P. Org. Lett., 2007, 9: 1915.
[102] Kitai J-i, Kobayashi T, Uchida W, Hatakeyama M, Yokojima S, Nakamura S, Uchida K. J. Org. Chem., 2012, 77: 3270.
[103] Sud D, Wigglesworth T J, Branda N R. Angew. Chem. Int. Ed., 2007, 46: 8017.
[104] Tian H, Chen B, Tu H Y, Müllen K. Adv. Mater., 2002, 14: 918.
[105] Jiaxiang Y, Zihui C, Junhui X, Fushi Z. Langmuir, 2011, 27: 8061.
[106] Mao Y Y, Liu K Y, Lv G L, Wen Y, Zhu X J, Lan H C, Yi T. Chem. Commum., 2015, 51: 6667.
[107] Liu K Y, Wen Y, Shi T, Li Y, Li F Y, Zhao Y L, Huang C H, Yi T. Chem. Commum. 2014, 50: 9141.
[108] Liu W J, Hu F, Chen Z M, Li Z Y, Yin J, Yu G A, Liu S H. Dyes Pigm. 2015, 115: 190.
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 霍志铭, 李攻科*, 肖小华*. 有机光致变色材料在快速可视化检测中的应用[J]. 化学进展, 2017, 29(2/3): 252-261.
[3] 邹祺, 张隽佶, 田禾*. 多功能二噻吩乙烯光致变色光分子开关材料[J]. 化学进展, 2012, (9): 1632-1645.
[4] 李倩倩, 李振, 秦金贵. 新型含吲哚基团的光电功能材料*[J]. 化学进展, 2009, 21(12): 2578-2588.
[5] 李陵岚,刘辉,杨泽慧,何应,叶楚平. 多功能光致变色化合物*[J]. 化学进展, 2009, 21(04): 654-662.
[6] 张海璇,孟旬,李平. 光和温度刺激响应型材料*[J]. 化学进展, 2008, 20(05): 657-672.
[7] 龚涛,冯嘉春,韦玮,黄维. 二芳基乙烯类化合物用作光开关的最新研究*[J]. 化学进展, 2006, 18(06): 698-706.
[8] 王建营,冯长根,胡文祥. 光致变色聚合物研究进展*[J]. 化学进展, 2006, 18(0203): 298-307.
[9] 文国涛,丁晓媛,刘磊,郭庆祥. 1,2-二芳基乙烯分子无损读取研究*[J]. 化学进展, 2005, 17(05): 826-838.
[10] 李海艳,李强. 有机染料-层状硅酸盐光活性纳米复合材料*[J]. 化学进展, 2003, 15(02): 135-.
[11] 贡浩飞,吕庆,刘鸣华. 界面光化学反应研究进展*[J]. 化学进展, 2001, 13(06): 420-.
[12] 宋宇飞,杨频. 对DNA具有识别和断裂功能的金属插入剂的研究[J]. 化学进展, 2001, 13(05): 368-.
[13] 杨频,宋宇飞. 金属配合物键合DNA的研究进展*[J]. 化学进展, 2000, 12(01): 32-.
[14] 樊美公. 光子存储原理与光致变色材料[J]. 化学进展, 1997, 9(02): 170-.
[15] 樊美公. 光致变色与光子器件[J]. 化学进展, 1994, 6(03): 209-.