English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 607-616 DOI: 10.7536/PC160111 前一篇   后一篇

• 综述与评论 •

光热显微术:基于光吸收的单分子成像技术

袁婷联1,2, 蒋莹琰1, 王伟1*   

  1. 1. 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210093;
    2. 四川大学化学学院 成都 610064
  • 收稿日期:2016-01-01 修回日期:2016-02-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 王伟 E-mail:wei.wang@nju.edu.cn
  • 基金资助:
    国家自然科学基金委重大科研仪器研制项目(No.21527807)资助

Photothermal Microscopy: An Absorption-Based Single Molecule Imaging Technology

Yuan Tinglian1,2, Jiang Yingyan1, Wang Wei1*   

  1. 1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received:2016-01-01 Revised:2016-02-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21527807).
光热显微术是近年来获得广泛关注和长足发展的一种新型光学显微成像技术,能够实现单个纳米粒子甚至单分子的免标记光学成像。其成像原理是利用先进的光学方法探测单分子或单纳米粒子吸收特定波长激发光后所产生的局域温度和介质折射率的微小变化,从而定量研究观测对象的光热特性。由于无辐射弛豫是激发态分子回到基态的优势过程,分子的光热特性相比于荧光特性更具有普遍意义。凭借无需标记、高灵敏度和信号稳定等优点,近十年来,关于单分子和单纳米粒子的光热显微成像研究不断取得突破,并在纳米科学和生命科学等领域获得越来越多的发展和应用,展现出了蓬勃的生命力和良好的发展前景。本文重点综述了光热显微技术的成像原理、发展历程、技术特色以及系统优化方法,列举了光热成像在活细胞研究和生物学领域的应用,最后总结了光热成像的优缺点并分析其主要面临的挑战以及未来的发展趋势,希望吸引更多的研究人员加入到这一新技术的研究队伍中来。
Photothermal microscopy (PTM) is an emerging label-free optical microscopy technique that can image the photothermal property of single nanoparticles and single molecules. The image contrast relied on the sensitive detection of local temperature gradients and refractive index distribution associated with the photothermal effect of individual molecules or nanoparticles when it was illuminated with particular incident light. Since non-radiative relaxation is usually the dominant process for an excited molecule to return back to the ground state, photothermal properties are of more generalized significance compared to fluorescence. The past decade has witnessed the great growth and development of photothermal microscopy, mainly because of its advantages of label-free detection, high sensitivity and stability. Furthermore, this technique has received increasing attention in nano-science and life science, ranging from fundamental studies on molecule-photon interactions to promising applications in single cell imaging and bio-sensing. The review mainly describes the imaging principle, optical apparatus, technical concerns for performance optimization of PTM, and subsequently enumerates the important applications in live-cell studies and bioscience. In the last section, we provide perspectives regarding the major strength and challenges for the further development and applications of photothermal microscopy technology.

Contents
1 Introduction
2 Principle and apparatus of PTM
2.1 Imaging principle
2.2 Photothermal interference contrast (PIC)
2.3 Photothermal heterodyne imaging (PHI)
2.4 Performance optimization
3 Imaging single molecules and single nanoparticles
3.1 Plasmonic nanoparticles
3.2 Semiconductor nanocrystals
3.3 Carbon nanotubes
3.4 Organic molecules
4 Application
4.1 Photothermal probes for live cell imaging
4.2 Label-free imaging of biomolecules
4.3 PTM combined with other techniques
5 Conclusion and outlook

中图分类号: 

()
[1] Miller J. Physics Today, 2010, 63: 20.
[2] Weisenburger S, Sandoghdar V. Contemporary Physics, 2015, 56: 123.
[3] Kozankiewicz B, Orrit M. Chemical Society Reviews, 2014, 43: 1029.
[4] van Dijk M A, Tchebotareva A L, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B. Physical Chemistry Chemical Physics, 2006, 8: 3486.
[5] van Dijk M A, Lippitz M, Orrit M. Accounts of Chemical Research, 2005, 38: 594.
[6] Ignatovich F V, Novotny L. Physical Review Letters, 2006, 96: 013901.
[7] Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T. Analytical Chemistry, 2001, 73: 2112.
[8] Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Science, 2002, 297: 1160.
[9] Gaiduk A, Yorulmaz M, Ruijgrok P V, Orrit M. Science, 2010, 330: 353.
[10] Berciaud S, Cognet L, Blab G A, Lounis B. Physical Review Letters, 2004, 93: 257402.
[11] Berciaud S, Lasne D, Blab G A, Cognet L, Lounis B. Physical Review B, 2006, 73: 045424.
[12] Selmke M, Braun M, Cichos F. ACS Nano, 2012, 6: 2741.
[13] Selmke M, Braun M, Schachoff R, Cichos F. Physical Chemistry Chemical Physics, 2013, 15: 4250.
[14] Selmke M, Cichos F. Physical Review Letters, 2013, 110: 103901.
[15] Vermeulen P, Cognet L, Lounis B. Journal of Microscopy, 2014, 254: 115.
[16] Cognet L, Berciaud S, Lasne D, Lounis B. Analytical Chemistry, 2008, 80: 2288.
[17] Gaiduk A, Ruijgrok P V, Yorulmaz M, Orrit M. Chemical Science, 2010, 1: 343.
[18] Ruijgrok P V. Doctoral Dissertation of Leiden University, 2012.
[19] Mustafa Y. Doctoral Dissertation of Leiden University, 2013.
[20] Chang W S, Link S. Journal of Physical Chemistry Letters, 2012, 3: 1393.
[21] Govorov A O, Richardson H H. Nano Today, 2007, 2: 30.
[22] Lu S, Min W, Chong S, Holtom G R, Xie X S. Applied Physics Letters, 2010, 96: 113701.
[23] Selmke M, Heber A, Braun M, Cichos F. Applied Physics Letters, 2014, 105: 013511.
[24] Arunkarthick S, Bijeesh M M, Varier G K, Kowshik M, Nandakumar P. Journal of Microscopy, 2014, 256: 111.
[25] Nedosekin D A, Galanzha E I, Dervishi E, Biris A S, Zharov V P. Small, 2014, 10: 135.
[26] Zharov V P. Nature Photonics, 2011, 5: 110.
[27] Brenner M P, Lohse D. Physical Review Letters, 2008, 101: 214505.
[28] Kim J W, Galanzha E I, Shashkov E V, Moon H M, Zharov V P. Nature Nanotechnology, 2009, 4: 688.
[29] Nedosekin D A, Foster S, Nima Z A, Biris A S, Galanzha E I, Zharov V P. Drug Metabolism Reviews, 2015, 47: 346.
[30] Heylman K D, Knapper K A, Goldsmith R H. Journal of Physical Chemistry Letters, 2014, 5: 1917.
[31] Miyazaki J, Tsurui H, Kawasumi K, Kobayashi T. Optics Express, 2015, 23: 3647.
[32] Miyazaki J, Tsurui H, Kawasumi K, Kobayashi T. Optics Letters, 2015, 40: 479.
[33] He J, Miyazaki J, Wang N, Tsurui H, Kobayashi T. Optics Express, 2015, 23: 9762.
[34] He J, Miyazaki J, Wang N, Tsurui H, Kobayashi T. Optics Letters, 2015, 40: 1141.
[35] Miyazaki J, Tsurui H, Kobayashi T. Biomedical Optics Express, 2015, 6: 3217.
[36] Miyazaki J, Tsurui H, Kawasumi K, Kobayashi T. Optics Express, 2015, 22: 18833.
[37] Tong L, Cheng J X. Materials Today, 2011, 14: 264.
[38] Devadas M S, Devkota T, Johns P, Li Z M, Lo S S, Yu K, Huang L B, Hartland G V. Nanotechnology, 2015, 26: 354001.
[39] Basche T. Angewandte Chemie International Edition, 2011, 50: 3602.
[40] Jain P K, Huang X, El-Sayed I H, El-Sayad M A. Plasmonics, 2007, 2: 107.
[41] Richardson H H, Hickman Z N, Govorov A O, Thomas A C, Zhang W, Kordesch M E. Nano Letters, 2006, 6: 783.
[42] Berciaud S, Cognet L, Tamarat P, Lounis B. Nano Letters, 2005, 5: 515.
[43] Zijlstra P, Paulo P M R, Orrit M. Nature Nanotechnology, 2012, 7: 379.
[44] Jain P K, Huang X, El-Sayed I H, El-Sayed M A. Accounts of Chemical Research, 2008, 41: 1578.
[45] Murphy C J, Gole A M, Stone J W, Sisco P N, Alkilany A M, Goldsmith E C, Baxter S C. Accounts of Chemical Research, 2008, 41: 1721.
[46] Berciaud S, Cognet L, Lounis B. Nano Letters, 2005, 5: 2160.
[47] Berciaud S, Cognet L, Poulin P, Weisman R B, Lounis B. Nano Letters, 2007, 7: 1203.
[48] Moerner W E, Kador L. Physical Review Letters, 1989, 62: 2535.
[49] Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 11350.
[50] Blab G A, Cognet L, Berciaud S, Alexandre I, Husar D, Remacle J, Lounis B. Biophysical Journal, 2006, 90: L13.
[51] Lasne D, Blab G A, Berciaud S, Heine M, Groc L, Choquet D, Cognet L, Lounis B. Biophysical Journal, 2006, 91: 4598.
[52] Leduc C, Si S, Gautier J, Soto Ribeiro M, Wehrle Haller B, Gautreau A, Giannone G, Cognet L, Lounis B. Nano Letters, 2013,13: 1489.
[53] Bogart L K, Taylor A, Cesbron Y, Murray P, Levy R. ACS Nano, 2012, 6: 5961.
[54] Lasne D, Blab G A, De Giorgi F, Ichas F, Lounis B, Cognet L. Optics Express, 2007, 15: 14184.
[55] Gruszecki W I, Luchowski R, Zubik M, Grudzinski W. Analytical Chemistry, 2015, 87: 9572.
[56] Gaiduk A, Ruijgrok P V, Yorulmaz M, Orrit M. Physical Chemistry Chemical Physics, 2011, 13: 149.
[57] Gaiduk A, Yorulmaz M, Orrit M. ChemPhysChem, 2011, 12: 1536.
[58] Jung Y, Reif R, Zeng Y, Wang R K. Nano Letters, 2011, 11: 2938.
[59] Pache C, Bocchio N L, Bouwens A, Villiger M, Berclaz C, Goulley J, Gibson M I, Santschi C, Lasser T. Optics Express, 2012, 20: 21385.
[60] Kaiplavil S, Mandelis A. Nature Photonics, 2014, 8: 635.
[61] Atlan M, Gross M, Desbiolles P, Absil E, Tessier G, Coppey M M. Optics Express, 2008, 33: 500.
[62] Absil E, Tessier G, Gross M, Atlan M, Warnasooriya N, Suck S, Coppey M M, Fournier D. Optics Express, 2010, 18: 780.
[63] Vasudevan S, Chen G C K, Lin Z, Ng B K. Applied Optics, 2015, 54: 4478.
[64] Min W, Lu S J, Chong S S, Roy R, Holtom G R, Xie X S. Nature, 2009, 461: 1105.
[65] Chong S, Min W, Xie X S. Journal of Physical Chemistry Letters, 2010, 1: 3316.
[66] Kukura P, Celebrano M, Renn A, Sandoghdar V. Journal of Physical Chemistry Letters, 2010, 1: 3323.
[67] Celebrano M, Kukura P, Renn A, Sandoghdar V. Nature Photonics, 2011, 5: 95.
[68] Octeau V, Cognet L, Duchesne L, Lasne D, Schaeffer N, Fernig D G, Lounis B. ACS Nano, 2009, 3: 345.
[69] Raduenz R, Rings D, Kroy K, Cichos F. Journal of Physical Chemistry A, 2009, 113: 1674.
[70] Paulo P M R, Gaiduk A, Kulzer F, Krens S F G, Spaink H P, Schmidt T, Orrit M. Journal of Physical Chemistry C, 2009, 113: 11451.
[71] Selmke M, Braun M, Schachoff R, Cichos F. Physical Chemistry Chemical Physics, 2013, 15: 4250.
[72] Liu G L, Kim J, Lu Y, Lee L P. Nature Materials, 2005, 5: 27.
[73] Buchs G, Bagiante S, Steele G A. Nature Communications, 2014, 5: 4987.
[74] Tsen A W, Donev L A K, Kurt H, Herman L H, Park J. Nature Nanotechnology, 2008, 4: 108.
[75] Gao Z, Oudjedi L, Faes R, Morote F, Jaillet C, Poulin P, Lounis B, Cognet L. Scientific Reports, 2015, 5:17093.
[76] Chen Z, Shan X, Guan Y, Wang S, Zhu J J, Tao N. ACS Nano, 2015, 9: 11574.
[1] 刘晓君, 涂洋, 盖宏伟*. 单分子宽场光学显微成像技术[J]. 化学进展, 2013, 25(0203): 370-379.
[2] 韩权,阎宏涛. 激光热透镜光谱分析法*[J]. 化学进展, 2002, 14(01): 24-.