English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 829-838 DOI: 10.7536/PC151130 前一篇   后一篇

• 综述与评论 •

连续流微反应

何涛, 马小波, 徐志宏, 王周玉*   

  1. 西华大学化学系 成都 610039
  • 收稿日期:2015-11-01 修回日期:2015-12-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 王周玉 E-mail:wzyanne@163.com
  • 基金资助:
    国家自然科学基金项目(No. 21102115)和四川省教育厅重大培育项目(No.14CZ0014)资助

The Continuous Flow Micro-Reaction

He Tao, Ma Xiaobo, Xu Zhihong, Wang Zhouyu*   

  1. Department of Chemistry, Xihua University, Chengdu 610039, China
  • Received:2015-11-01 Revised:2015-12-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21102115 ) and the Great Cultivate Project from the Education Department of Sichuan Province (No.14CZ0014)
近几个世纪,传统釜式反应为我们解决了大量化工产品需求的问题。但其本身存在着很多的缺点,如安全隐患、环境污染、能源消耗巨大、占地面积大以及工艺放大困难等。连续流微反应以其高效的传质传热、精确控温控时、安全稳定、无放大效应以及反应的实时监控等优点,能很好地解决传统釜式反应存在的问题。本文对连续流微反应在最近五年的研究进展进行了概述,特别对连续流中的硝化反应、叠氮基丙烯酸酯的热解反应、格氏反应与类格氏反应、偶联反应、胺化反应、氧化还原反应、缩合反应、环化反应、多步骤反应及常用连续流微反应器进行了介绍。同时,对连续流微反应的优缺点进行了简要评述。
In recent centuries, the traditional tank reaction provides a large number of chemical products thermolysis of azidoacrylates. However, potential safety hazard, environmental pollution, huge energy consumption, huge site area and scale-up difficulties are the shortcomings. Continuous flow micro-reactor, with its high efficient heat transfer and mass transfer, accurate temperature control, security and stability, no amplification effect and the advantages of real-time monitoring, can solve the problems which existing in the traditional reaction. This review focuses on new findings in continuous flow micro-reaction in the last five years. The nitration reaction, thermolysis of azidoacrylates, Grignard and Grignard-type reactions, coupled reaction, amination reaction, oxidation and reduction reaction, condensation reaction, cyclization reaction, multistep reaction in flow condition and the continuous flow micro-reactors are introduced. Meanwhile, the potential strengths of the continuous flow micro-reaction as well as the weaknesses are discussed.

Contents
1 Introduction
2 Liquid phase reaction in flow condition
2.1 Nitration reaction
2.2 Thermolysis of azidoacrylates
2.3 Grignard and Grignard-type reaction
2.4 Coupled reaction
2.5 Amination reaction
2.6 Oxidation and Reduction reaction
2.7 Condensation reaction
2.8 Cyclization reaction
2.9 Other reactions
3 The gas-liquid reaction and gas-liquid-solid reaction in flow condition
4 Multistep reaction in flow condition
5 The continuous flow micro-reactors
6 Others
7 Conclusion

中图分类号: 

()
[1] Watts P, Haswell S J. Chem. Soc. Rev., 2005, 34: 235.
[2] Nieves-Remacha M J, Kulkarni A A, Jensen K F. Ind. Eng. Chem. Res., 2012, 51: 16251.
[3] Aillet T, Loubiere K, Dechy-Cabaret O, Prat L. Chem. Eng. Process., 2013, 64: 38.
[4] Nieves-Remacha M J, Kulkarni A A, Jensen K F. Ind. Eng. Chem. Res., 2013, 52: 8996.
[5] Wegner J, Ceylan S, Kirschning A. Adv. Synth. Catal., 2012, 354: 17.
[6] Wiles C, Watts P. Chem. Commun., 2011, 47: 6512.
[7] Mason B P, Price K E, Steinbacher J L, Bogdan A R, McQuade D T. Chem. Rev., 2007, 107: 2300.
[8] Brocklehurst C E, Lehmann H, Vecchia L L. Org. Process Res. Dev., 2011, 15: 1447.
[9] Braune S, Pochlauer P, Reintjens R, Steinhofer S, Winter M, Lobet O, Guidat R, Woehl P, Guermeur C. Chim. Oggi., 2009, 27: 26.
[10] O'Brien A G, Levesque F, Seeberger P H. Chem. Commun., 2011, 47: 2688.
[11] Riva E, Gagliardi S, Martinelli M, Passeralla D, Vigo D, Rencurosi A. Tetrahedron, 2010, 66: 3242.
[12] Mateos C, Rincon J A, Villanueva J. Tetrahedron Lett., 2013, 54: 2226.
[13] Petersen P T, Becker M R, Knochel P. Angew. Chem. Int. Ed., 2014, 53: 7933.
[14] Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J. Angew. Chem. Int. Ed., 2010, 49: 7543.
[15] Mateos C, Rincon J A, Beatriz M H, Villanueva J. Tetrahedron Lett., 2014, 55: 3701.
[16] Pascanu V, Hansen H R, Gomez A B, Ayats C, Platero-Prats A E, Johansson M J, Pericas M, Martin-Matue B. ChemSusChem, 2015, 8: 123.
[17] Geoffrey K T, Jennifer B. Tetrahedron Lett., 2016, 57: 654.
[18] Noel T, Naber J R, Hartman R L, McMullen J P, Jensen K F, Buchwald S L. Chem. Sci., 2011, 2: 287.
[19] Sedelmeier J, Ley S V, Baxendale I R, Baumann M. Org. Lett., 2010,12(16): 3618.
[20] Newman S G, Gu L, Lesniak C, Victor G, Meschke F, Abahmane L, Jensen K F. Green Chem., 2014, 16: 176.
[21] 严生虎(Yan S H), 韩玲玲(Han L L), 沈卫(Shen W), 沈介发(Shen J F), 刘建武(Liu J W), 张跃(Zhang Y). 化工进展(Chemical Industry Engineering Progress), 2014, 33(11): 3061.
[22] Comer E, Organ M G. J. Am. Chem. Soc., 2005, 127: 8160.
[23] Ceylan S, Coutable L, Wegner J, Kirschning A. Chem. Eur. J., 2011, 17: 1884.
[24] Taghavi-Moghadam S, Kleemann A, Golbig K G. Org. Process Res. Dev., 2001, 5: 652.
[25] Garcia-Egido E, Wong S Y F, Warrington B H. Lab Chip, 2002, 2: 31.
[26] Schwalbe T, Autze V, Wille G. Chimia, 2002, 56: 636.
[27] Garcia-Egido E, Spikmans V, Wong S Y F, Warrington B H, Lab Chip, 2003, 3: 73.
[28] Damm M, Glasnov T N, Kappe C O. Org. Process Res. Dev., 2010, 14: 215.
[29] Hrngren P, Fardost A, Russo F, Schanche J S, Fagrell M, Larhed M. Org. Process Res. Dev., 2012, 16: 1053.
[30] May S, Johnson M D, Braden T M, Calvin J R, Haeberle B D, Jines A R, Miller R D, Plocharczyk E F, Rener G A, Richey R N, Schmid C R, Vaid R K, Yu H. Org. Process Res. Dev., 2012, 16: 982.
[31] 严生虎(Yan S H), 张稳(Zhang W), 沈卫(Shen W), 沈介发(Shen J F), 马兵(Ma B), 刘建武(Liu J W), 张跃(Zhang Y). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 2014, 28(2): 353.
[32] 刘建武(Liu J W), 郭成(Guo C), 严生虎(Yan S H), 沈介发(Shen J F), 张跃(Zhang Y). 精细石油化工(Speciality Petrochemicals), 2015, 32(6): 68.
[33] Michel B, Greaney M F. Org. Lett., 2014, 16: 2684.
[34] Eliasen A M, Thedford R P, Claussen K R, Yuan C X, Siegel D. Org. Lett., 2014, 16: 3628.
[35] 杨国忠(Yang G Z), 董璞(Dong P), 郭婷婷(Guo T T), 郭翠红(Guo C H). 精细与专用化学品(Fine ang Specialty Chemicals), 2015, 23(8): 41.
[36] Brzozowski M, O'Brien M, Ley S V, Polyzos A. Acc. Chem. Res., 2015, 48: 349.
[37] O'Brien M, Baxendale I R, Ley S V. Org. Lett., 2010, 12: 1596.
[38] Koos P, Gross U, Polyzos A, O'Brien M, Baxendale I R, Ley S V. Org. Biomol. Chem., 2011, 9: 6903.
[39] Petersen T P, Polyzos A, O'Brien M, Ulven T, Baxendale I R, Ley S V. ChemSusChem, 2012, 5: 274.
[40] Bourne S L, O'Brien M, Kasinathan S, Koos P, Tolstoy P, Hu D X, Bates R W, Martin B, Schenkel B, Ley S V. ChemCatChem, 2013, 5: 159.
[41] Kasinathan S, Bourne S L, Tolstoy P, Koos P, O'Brien M, Bates R W, Baxendale I R, Ley S V. Synlett, 2011, 18: 2648.
[42] O'Brien M, Taylor N, Polyzos A, Baxendale I R, Ley S V. Chem. Sci., 2011, 2: 1250.
[43] Bourne S L, Ley S V. Adv. Synth. Catal., 2013, 355: 1905.
[44] Brzozowski M, Forni J A, Savage G P, Polyzos A. Chem. Commun., 2015, 51: 334.
[45] Hattori T, Tsubone A, Sawama Y, Monguchi Y, Sajiki H. Tetrahedron, 2014, 70: 4790.
[46] Hannes P L, Hessel G V, Noel T. Org. Lett., 2014, 16: 5800.
[47] 姚祥华(Yao X H), 吕孟辉(Lv M H). 广州化工(Guangzhou Chemical Industry), 2015, 43(7): 79.
[48] 陈华祥(Chen H X), 李加荣(Li J R), 黎汉生(Li H S), 史大昕(Shi D X), 孙克宁(Sun K N). 含能材料(Chinese Journal of Energetic Materials), 2015, 23(10): 964.
[49] Zhang L X, Yan M M, Zhao Z M, Shen R W, Deng Q D. Chem. Eng. J., 2015, 262: 1168.
[50] Vanoye L, Wang J D, Pablos M, Philippe R, Bellefon C, Alain F R. Org. Process Res. Dev., 2016, 20: 90.
[51] Baxendale I R, Deeley J, Griffiths-Jones C M, Ley S V, Saaby S, Tranmer G K. Chem. Commun., 2006, 24: 2566.
[52] Petersen T P, Mirsharghi S, Rummel P C, Thiele S, Rosenkilde M M, Ritzen A, Ulven T. Chem. Eur. J., 2013, 19: 9343.
[53] Jacq J, Pasau P. Chem. Eur. J., 2014, 20: 12223.
[54] Tsubogo T, Oyamada H, Kobayashi S. Nature, 2015, 16: 329.
[55] Snead D R, Jamison T F. Angew. Chem. Int. Ed., 2015, 54: 983.
[56] Schwalbe T, Kadzimirsz D, Jas G. QSAR Comb. Sci., 2005, 24: 758.
[57] Baxendale I R, Griffiths-Jones C M, Ley S V, Tranmer G K. Synlett, 2006, 3: 427.
[58] Wegner J, Ceylan S, Kirschning A. Adv. Synth. Catal., 2012, 354: 17.
[59] Hook B D A, Dohle W, Hirst P R, Pickworth M, Berry M B, Booker-Milburn K I. J. Org. Chem., 2005, 70: 7558.
[60] Mugo S M, Ayton K, Mol J, Catal B. Enzym., 2010, 67: 202.
[61] Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev., 2008, 108: 2265.
[62] Abou-Hassan A, Sandre O, Cabuil V. Angew. Chem. Int. Ed., 2010, 49: 6268.
[63] Lawton S, Steel G, Shering P, Zhao L, Laird I, Ni X W. Org. Process Res. Dev., 2009, 13: 1357.
[64] McMullen J P, Jensen K F. Annu. Rev. Anal. Chem., 2010, 3: 19.
[65] Wirth Thomas.赵东波(Zhao D B)(trans). 微反应器在有机合成及催化中的应用(Microreactors in Organic Synthesis and Catalysis). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2012. 7.
[66] Lavric E. Zhang F X, Cerato-Noyerie C, Woehl P. Chem. Eng. Trans., 2011, 24: 1369.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[3] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[4] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[5] 梁振鹏,王朝阳,孙启龙,童真. LbL层层纳米自组装法制备新型微胶囊*[J]. 化学进展, 2004, 16(04): 485-.
[6] 马磊,陈彬,吴骊珠,彭明丽,张丽萍,佟振合. 微反应器中的不对称光化学反应*[J]. 化学进展, 2004, 16(03): 386-.
阅读次数
全文


摘要

连续流微反应