高级还原技术:一种水处理新技术

杨世迎, 张宜涛, 郑迪

化学进展 ›› 2016, Vol. 28 ›› Issue (6) : 934-941.

PDF(1072 KB)
English
PDF(1072 KB)
化学进展 ›› 2016, Vol. 28 ›› Issue (6) : 934-941. DOI: 10.7536/PC151121 CSTR: 32298.14.PC151121
引用本文:

引用本文
杨世迎, 张宜涛, 郑迪. 高级还原技术:一种水处理新技术[J]. 化学进展, 2016, 28(6): 934-941 DOI: 10.7536/PC151121
Yang Shiying, Zhang Yitao, Zheng Di. Advanced Reduction Processes: A Novel Technology for Water Treatment[J]. Progress in Chemistry, 2016, 28(6): 934-941 DOI: 10.7536/PC151121
综述与评论

高级还原技术:一种水处理新技术

  • 杨世迎1,2,3*, 张宜涛1,3, 郑迪1,3
作者信息 +

Advanced Reduction Processes: A Novel Technology for Water Treatment

  • Yang Shiying1,2,3*, Zhang Yitao1,3, Zheng Di1,3
Author information +
文章历史 +

摘要

最近3年,水处理领域出现了高级还原技术(advanced reduction processes,ARPs)的新概念,该技术将紫外光(UV)等活化手段与亚硫酸盐(SO32-)、连二亚硫酸盐(S2O42-)等还原剂相结合,从而产生强还原性自由基,如水合电子(eaq-)、氢原子(H·)等,氯代有机物、氟代有机物等难降解有机污染物和高氯酸盐、溴酸盐、硝酸盐等无机污染物都能得到有效还原去除,在水处理领域有广阔的应用前景。目前,ARPs的研究才刚刚起步,本文在分析其基本原理的基础上,综述了国内外ARPs的研究现状,并就存在问题进行了研究展望,以期促进ARPs的发展。

Abstract

During the past three years, a new group of water and wastewater treatment technologies, called advanced reduction processes (ARPs), has been developed by combining activation methods with reducing reagents to yield reducing free radicals, including hydrated electron (eaq-) and hydrogen atom (H·), etc. The most commonly used activation method is UV, and the reducing agent is usually sulfite (SO32-) or dithionite (S2O42-). The produced reducing radicals can donate an unpaired electron to a target contaminant and thereby chemically reduce it. Many kinds of stubborn contaminants can be degraded by ARPs, such as chlorinated organic compounds, fluorinated compounds and some inorganic pollutants (perchlorate, nitrate, bromate, etc.). So this novel process has a bright future in control of environmental pollutions. However, the ARPs are short of systematic research now. In order to promote the development of ARPs, the present research situation and prospect are reviewed in this paper. And the existing problems are also presented based on the analysis of its basic principles.

Contents
1 Introduction
2 Reaction mechanism of ARPs
2.1 Production of free radicals
2.2 The reaction between contaminant and free radicals
3 The research progress of ARPs
3.1 Influencial factors
3.2 Mechanism of degradation
3.3 Kinetic model
4 Conclusion and prospection
4.1 A further study of factors
4.2 Making clear of the degradation mechanism
4.3 Evaluating removal efficiency of different senior reduction technology for different pollutants
4.4 The extension of ARPs

关键词

高级还原技术 / 水合电子 / 氢原子 / 紫外光 / 亚硫酸盐 / 连二亚硫酸盐

Key words

advanced reduction processes (ARPs) / hydrated electron / hydrogen atom / UV / sulfite / dithionite

中图分类号: X131.2    X52   

参考文献

[1] Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39: 1338.
[2] Wang C B, Zhang W X. Environ. Sci. Technol., 1997, 7: 2154.
[3] Bae S J, Hanna K. Environ. Sci. Technol., 2015, 49: 10536.
[4] Angela M M, Corinne H D L, Thomas M. Y. Environ. Sci. Technol., 2003, 37: 3189.
[5] Sohn K, Kang SW, Ahn S, Woo M, Yang SK. Environ. Sci. Technol., 2006, 40: 5514.
[6] Sushil R K, Bruce M, Laurent C, Heechul C. Environ. Sci. Technol., 2005, 39: 1291.
[7] Sushil R K, Grenèche J M, Choi H. Environ. Sci. Technol., 2006, 40: 2045.
[8] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z),王萍(Wang P), 刘玉红(Liu Y H), 王茂东(Wang M D). 化学进展(Progress in Chemistry). 2008, 9(20): 1433.
[9] Yu H, Nie E, Xu J, Yana S W, Cooper W J, Song W H. Water Res., 2013, 47: 1909.
[10] Li X C, Ma J, Liu G F, Fang J Y, Yue S Y, Guan Y H, Chen L W, Liu X W. Environ. Sci. Technol., 2012, 46: 7342.
[11] Neta P, Huie R E, Harriman A. Phys. Chem., 1987, 91: 1606.
[12] Hijnen W A M, Beerendonk E F, Medema G J. Water Res., 2006, 40: 3.
[13] 王亚军(Wang Y J), 姜丽娟(Jiang L J), 冯长根(Feng C G). 化学进展(Progress in Chemistry), 2013, 12(25): 1999.
[14] 张锋振(Zhang F Z), 吴超飞(Wu C F), 胡芸(Hu Y), 韦朝海(Wei C H). 化学进展(Progress in Chemistry), 2014, 26(6): 1079.
[15] Vellanki B P, Batchelor B, Abdel-Wahab A. Environ. Eng. Sci., 2013, 30: 264.
[16] Liu X, Yoon S, Batchelor B, Abdel-Wahab A. Sci. Total Environ., 2013, 454: 578.
[17] Liu X, Yoon S, Batchelor B, Abdel-Wahab A. Chem. Eng. J., 2013, 215: 868.
[18] Liu X, Vellanki B P, Batchelor B, Abdel-Wahab A. Chem. Eng. J., 2014, 237: 300.
[19] Yoon S, Han D S, Liu X, Batchelor B. Environ. Chem. Eng., 2014, 2: 731.
[20] Qu Y, Zhang C J, Chen P, Zhou Q, Zhang W X. Chemosphere, 2014, 107: 218.
[21] Vellanki B P, Batchelor B. J. Hazard. Mater., 2013, 262: 348.
[22] Bensalah N, Nicola R, Abdel-Wahab A. Environ. Sci. Technol., 2014, 11: 1733.
[23] Jung B, Nicola R, Batchelor B, Abdel-Wahab A. Chemosphere, 2014, 117: 663.
[24] Liu X W, Zhang T Q, Wang L L, Shao Y, Fang L. Chem. Eng. Sci., 2015, 260: 740.
[25] Song Z, Tang H Q, Wang N, Zhu L H. J. Hazard. Mater., 2013, 262: 332.
[26] Jung B, Farzaneh H, Khodary A, Abdel-Wahab A. Chem. Eng. J., 2015, 3: 2194.
[27] Duan Y, Batchelor B. J. Environ. Sci. Heal., Part A, 2014, 49: 731.
[28] Liu X W, Zhang T Q, Shao Y. Clean-Soil, Air, Water, 2014, 42: 1370.
[29] Liu C S, Shih K, Wei L, Wang F, Li F B. Chemosphere, 2011, 85: 1438.
[30] Shah N S, Khan J A, Nawaz S, Khan H M. J. Hazard. Mater., 2014, 278: 40.
[31] Zhang Z J, Wang X N, Xue Y C, Li H J, Dong W B. Chem. Eng. J., 2015, 263: 186.
[32] Siefermann K R, Abel B. Angew. Chem. Int. Ed., 2011, 50: 5264.
[33] Handbook of Chemistry and Physics. 92nd ed. BR: Chemical Rubber Compan, 2011.
[34] Atkins P. Physical Chemistry. 6th ed. NY: W.H. Freeman and Company, 1997.
[35] Ohlsson P I, Blanck J, Ruckpaul K. Biol. Chem., 1986, 158: 451.
[36] 魏宝明(Wei B M).金属腐蚀理论及应用(Metal Corrosion Theory and Application),北京:化学工业出版社(Beijing: Chemical Industry Press), 1984.
[37] CRC Handbook of Chemistry and Physics, 87th ed. Boca Raton, FL: CRC Press, 2006.
[38] Brandt C, Van Eldik R. Chem. Rev., 1995, 95: 119.
[39] Park H, Vecitis C D, Cheng J, Dalleska N F, Mader B T, Hoffmann M R. Photochem. Photobiol. Sci., 2011, 10: 1945.
[40] Bu L J, Zhou S Q, Shi Z, Deng L, Li G C, Yi Q H, Gao N Y. Environ. Sci. Pollut. R., 2016, 23: 2848.
[41] Devonshire R, Weiss J J. Phys. Chem., 1968, 72: 3815.
[42] Dogliotti L, Hayon E. Phys. Chem., 1968, 72: 1800.
[43] Jeevarajan A S, Fessenden R W. Phys. Chem., 1989, 93: 3511.
[44] Fischer M, Warneck P. Phys. Chem., 1996, 100: 15111.
[45] Neta P, Huie R E. Environ. Health. Perspect., 1985, 64: 209.
[46] Xie L, Shang C. Chemosphere, 2006, 64: 919.
[47] Buxton G V, Greenstock C L, Helman W P, Ross A B. Phys. Chem. Ref., 1988, 17: 513.
[48] Hayon E, Treinin A, Wilf J. J. Am. Chem. Soc., 1972, 94: 47.
[49] Makarov S V. Uspekhi Khimii., 2001, 70: 1005.
[50] Kenna C E, Gutheil W G, Song W. Biochim. Biophys. Acta, 1991, 1075: 109.
[51] Pukhovskaya S G, Guseva L Z, Makarov S V, Naidenko E V. Anal. Chem., 2005, 60: 21.
[52] Song Z, Wang N, Zhu L H, Huang A Z, Zhao X L, Tang H Q. Chem. Eng. J. 2012, 198: 379.
[53] Shirom M, Stein G. Chem. Phys. 1971, 55: 3372.
[54] Buxton G V, Greenstock C L, Helman W P. Phys.Chem. 1988, 17: 513.
[55] Siddiqui M S, Amy G L, Cooper W J, Kurucz C N, Waite T D, Nickelsen M G. J. Am. Water Works Ass., 1996, 88: 90.
[56] Siddiqui M. J. Am.Water Works Assoc., 1994, 10: 81.
[57] Water Environment Federation. Industrial Wastewater Management, Treatment, and Disposal, 3th ed, NY: McGraw-Hill, 2008.
[58] Idris A, Hassan N, Rashid R, Ngomsik A F. J. Hazard. Mater., 2011, 186: 629.
[59] Moussavi G, Jiani F, Shekoohiyan S. Sep. Purif. Technol., 2015, 151: 218.
[60] Botlagudurua V S V, Batchelor B, Abdel-Wahab A. J. Water Pro. Eng., 2015, 5: 76.
[61] Zhang C Y, Qu Y, Zhao X Y, Zhou Q. Clean-Soil, Air, Water, 2015, 43: 223.
[62] Li X C, Fang J Y, Liu G F, Zhang S J, Pan B C, Ma J. Water Res., 2014, 62: 220.

基金

国家自然科学基金项目(No.21107101)资助

PDF(1072 KB)

6787

Accesses

0

Citation

Detail

段落导航
相关文章

/