English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 647-656 DOI: 10.7536/PC151110 前一篇   后一篇

• 综述与评论 •

石墨烯/纤维素复合材料的制备及应用

高玉荣1,2, 黄培1, 孙佩佩1, 吴敏1*, 黄勇1   

  1. 1. 中国科学院理化技术研究所 北京 100190;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2015-11-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 吴敏 E-mail:wumin@mail.ipc.ac.cn.
  • 基金资助:
    国家自然科学基金项目(No.51472253,51172247,51373191)资助

Preparation and Application of Graphene/Cellulose Composites

Gao Yurong1,2, Huang Pei1, Sun Peipei1, Wu Min1*, Huang Yong1   

  1. 1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-11-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51472253, 51172247, 51373191).
近年来,石墨烯/纤维素复合材料引起了研究者的广泛关注。该材料在透明导电柔性薄膜、电容器、载药、紫外线防护、传感器、吸附等领域有重要的应用价值。本文在收集、归类研究国内外研究者在石墨烯/纤维素复合材料制备方法、性能以及应用工作的基础上,对石墨烯和纤维素复合材料的混合技术、制备方法及应用进行了综述。
Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed together in a honeycomb hexagonal lattice. The exceptional structure endows graphene with excellent electrical, mechanical, thermal, and optical properties. Up to now, considerable efforts have been made to explore its application in varied areas, such as catalyst, battery, sensor and etc. Cellulose, one of the most abundant natural polymer on earth, is featured by non-toxicity, renewability, biodegradability and biocompatibility. The hydrophilicity and hydrophobicity, originated from the enriched O-H and C-H, respectively, have made cellulose an ideal candidate for the fabrication of graphene-based materials. So far, graphene/cellulose composites have shown great potential in the applications of transparent conductive flexible films, supercapacitors, drug delivery, UV-protection, sensors, absorbents and so on. In this review, we study the interaction between cellulose materials and graphene materials. Subsequently, the mixing technics, fabrication methods, and application of the graphene/cellulose composites are summarized. Finally, problems, such as dispersion of graphene in cellulose and production efficiency, hampering its up-scale application, have been pointed out.

Contents
1 Introduction
2 Interactions between graphene and cellulose
3 Mixing methods of graphene/cellulose composite
3.1 Solution mixing
3.2 Melting mixing
3.3 Others
4 Processing of graphene/cellulose composite
4.1 Regeneration of cellulose gel
4.2 Vacuum filtration
4.3 Solution coating
4.4 Dip and dry
4.5 Film transfer
4.6 Aerogel through freeze drying
5 Applications of graphene/cellulose composite
5.1 Thin film materials
5.2 Supercapacitors
5.3 Drug delivery
5.4 UV-protection
5.5 Sensors
5.6 Absorbents
5.7 Others
6 Conclusion

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306 (5696): 666.
[2] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321 (5887): 385.
[3] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K. Science, 2008, 320 (5881): 1308.
[4] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146 (9/10): 351.
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8 (3): 902.
[6] Xin G, Sun H, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T, Lian J. Adv. Mater., 2014, 26 (26): 4521.
[7] Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T, Kang K. Energy Environ. Sci., 2011, 4 (4): 1277.
[8] 高洁(Gao J), 汤烈贵(Tang L G). 纤维素科学(Cellulose Science). 北京: 科学出版社 ( Beijing: Science Press), 1999. 1.
[9] Morin B P, Breusova I P, Rogovin Z A. Adv. Polym. Sci., 1982, 42: 139.
[10] Heinze T, Liebert T. Prog. Polym. Sci., 2001, 26: 1689.
[11] Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40 (7): 3941.
[12] Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A. Biomacromolecules, 2009, 10 (7): 1992.
[13] Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A. Carbohydr. Polym., 2011, 84 (1): 579.
[14] Seppälä J V. eXPRESS Polymer Lett., 2012, 6 (4): 257.
[15] Siró I, Plackett D. Cellulose, 2010, 17 (3): 459.
[16] Boujemaoui A, Carlsson L, Malmstrom E, Lahcini M, Berglund L, Sehaqui H, Carlmark A. ACS Appl. Mater. Interfaces, 2012, 4 (6): 3191.
[17] Luong N D, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L S, Seppälä J. Eur. Polym. J., 2013, 49 (2): 335.
[18] Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A. Biomacromolecules, 2013, 14 (4): 1160.
[19] Alqus R, Eichhorn S J, Bryce R A. Biomacromolecules, 2015, 16 (6): 1771.
[20] Yokota S, Ueno T, Kitaoka T, Wariishi H. Carbohyd. Res., 2007, 342 (17): 2593.
[21] Jeon G W, An J E, Jeong Y G. Composites Part B Engineering, 2012, 43 (8): 3412.
[22] Shateri-Khalilabad M, Yazdanshenas M E. Carbohydr. Polym., 2013, 96 (1): 190.
[23] Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N. Carbohydr. Polym., 2005, 61 (4): 414.
[24] Saito T, Kimura S, Nishiyama Y, Isogai A. Biomacromolecules, 2007, 8 (8): 2485.
[25] Saito T, Isogai A. Biomacromolecules, 2004, 5 (5): 1983.
[26] Zhang J, Cao Y, Feng J, Wu P. J. Phys. Chem. C, 2012, 116 (14): 8063.
[27] Wu R L, Wang X L, Li F, Li H Z, Wang Y Z. Bioresour Technol., 2009, 100 (9): 2569.
[28] Zhang X, Liu X, Zheng W, Zhu J. Carbohydr. Polym., 2012, 88 (1): 26.
[29] Xu M, Huang Q, Wang X, Sun R. Ind. Crop. Prod., 2015, 70: 56.
[30] Zhang C, Zhang R Z, Ma Y Q, Guan W B, Wu X L, Liu X, Li H, Du Y L, Pan C P. ACS Sustainable Chem. Eng., 2015, 3 (3): 396.
[31] de Moraes A C, Andrade P F, de Faria A F, Simoes M B, Salomao F C, Barros E B, Goncalves M C, Alves O L. Carbohydr. Polym., 2015, 123: 217.
[32] Pahimanolis N, Vesterinen A H, Rich J, Seppala J. Carbohydr. Polym., 2010, 82 (1): 78.
[33] Luong N D, Pahimanolis N, Hippi U, Korhonen J T, Ruokolainen J, Johansson L S, Nam J D, Seppälä J. J. Mater. Chem., 2011, 21 (36): 13991.
[34] Kang Y R, Li Y L, Hou F, Wen Y Y, Su D. Nanoscale, 2012, 4 (10): 3248.
[35] Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang W, Wang F. Carbohydr. Polym., 2013, 97 (1): 243.
[36] Sadasivuni K K, Kafy A, Zhai L, Ko H U, Mun S, Kim J. Small, 2015, 11 (8): 994.
[37] Kafy A, Sadasivuni K K, Kim H C, Akther A, Kim J. Phys. Chem. Chem. Phys., 2015, 17 (8): 5923.
[38] 王磊磊(Wang L L). 北京化工大学博士论文(Doctoral Dissertation of Shanghai Jiaotong University), 2012.
[39] 王凯(Wang K). 上海交通大学博士论文(Doctoral Dissertation of Shanghai Jiaotong University), 2007.
[40] 陈志刚(Chen Z G), 张勇(Zhang Y), 杨娟(Yang J), 邱滔(Qiu T). 江苏大学学报(自然科学版)(Journal of Jiangsu University(Natural Science Edition)), 2005, 03: 248.
[41] Yoshida A, Hishiyama Y, Inagaki M. Carbon, 1991, 29 (8): 1227.
[42] Guo B, Chen W, Yan L. Acs. Sustain. Che. Eng., 2013, 1 (11): 1474.
[43] Weng Z, Su Y, Wang D W, Li F, Du J H, Cheng H M. Adv. Energy Mater., 2011, 1 (5): 917.
[44] Wan C, Jiao Y, Li J. Appl. Surf. Sci., 2015, 347: 891.
[45] Chen H, Müller M B, Gilmore K J, Wallace G G, Li D. Adv. Mater., 2008, 20 (18): 3557.
[46] Putz K W, Compton O C, Palmeri M J, Nguyen S T, Brinson L C. Adv. Funct. Mater., 2010, 20 (19): 3322.
[47] Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. Carbohydr. Polym., 2012, 87 (1): 644.
[48] Liang Y T, Hersam M C. J. Am. Chem. Soc., 2010, 132 (50): 17661.
[49] Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y. Carbon, 2013, 62: 501.
[50] Yao X, Yu W, Xu X, Chen F, Fu Q. Nanoscale, 2015, 7 (9): 3959.
[51] Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F. J. Mater. Chem. A, 2013, 1 (1): 63.
[52] Lee Y H, Kim J S, Noh J, Lee I, Kim H J, Choi S, Seo J, Jeon S, Kim T S, Lee J Y, Choi J W. Nano Lett., 2013, 13 (11): 5753.
[53] Yan C Y, Ren P G, Zhang Z P, Wang H, Li Z M. Cellulose, 2015, 22 (2): 1243.
[54] Shateri-Khalilabad M, Yazdanshenas M E. Cellulose, 2013, 20 (2): 963.
[55] Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22 (8).
[56] Niu Z, Dong H, Zhu B, Li J, Hng H H, Zhou W, Chen X, Xie S. Adv. Mater., 2013, 25 (7): 1058.
[57] Nyholm L, Nystrom G, Mihranyan A, Stromme M. Adv. Mater., 2011, 23 (33): 3751.
[58] Liu N, Ma W, Tao J, Zhang X, Su J, Li L, Yang C, Gao Y, Golberg D, Bando Y. Adv. Mater., 2013, 25 (35): 4925.
[59] Niu Z, Liu L, Zhang L, Shao Q, Zhou W, Chen X, Xie S. Adv. Mater., 2014, 26 (22): 3681.
[60] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Lett., 2012, 12 (4): 1806.
[61] Xu Y, Lin Z, Huang X, Wang Y, Huang Y, Duan X. Adv. Mater., 2013, 25 (40): 5779.
[62] Wang H, Zhu B, Jiang W, Yang Y, Leow W R, Wang H, Chen X. Adv. Mater., 2014, 26 (22): 3638.
[63] Niu Z, Zhou W, Chen J, Feng G, Li H, Hu Y, Ma W, Dong H, Li J, Xie S. Small, 2013, 9 (4): 518.
[64] Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L. MRS. Bull., 2013, 38 (04): 320.
[65] Siegel A C, Phillips S T, Dickey M D, Lu N, Suo Z, Whitesides G M. Adv. Funct. Mater., 2010, 20 (1): 28.
[66] Mazzeo A D, Kalb W B, Chan L, Killian M G, Bloch J-F, Mazzeo B A, Whitesides G M. Adv. Mater., 2012, 24 (21): 2850.
[67] Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J. Energy Environ. Sci., 2013, 6 (2): 470.
[68] Hyun W J, Park O O, Chin B D. Adv. Mater., 2013, 25 (34): 4729.
[69] Shi Z, Phillips G O, Yang G. Nanoscale, 2013, 5 (8): 3194.
[70] Andres B, Forsberg S, Dahlström C, Blomquist N, Olin H. Phys. Status Solidi B, 2014, 251 (12): 2581.
[71] Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50 (24): 5438.
[72] Rath T, Kundu P P. RSC Adv., 2015, 5 (34): 26666.
[73] Gao K, Shao Z, Wu X, Wang X, Zhang Y, Wang W, Wang F. Nanoscale, 2013, 5 (12): 5307.
[74] Lv S, Fu F, Wang S, Huang J, Hu L. Electron. Mater. Lett., 2015, 11 (4): 633.
[75] Wang D, Li Y X, Shi Z, Qin H L, Wang L, Pei X F, Jin J. Langmuir, 2010, 26 (18): 14405.
[76] Hu C, He S, Jiang S, Chen S, Hou H. RSC Adv., 2015, 5 (19): 14441.
[77] Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F. J. Power Sources, 2014, 249: 148.
[78] Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S. Adv. Mater., 2014, 26 (28): 4855.
[79] Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. J. Mater. Chem., 2012, 22 (27): 13773.
[80] An J, Gou Y, Yang C, Hu F, Wang C. Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33 (5): 2827.
[81] Bao H, Pan Y, Ping Y, Sahoo N G, Wu T, Li L, Li J, Gan L H. Small, 2011, 7 (11): 1569.
[82] Chowdhury I, Duch M C, Mansukhani N D, Hersam M C, Bouchard D. Environ. Sci. Technol., 2013, 47 (12): 6288.
[83] Hong B J, Compton O C, An Z, Eryazici I, Nguyen S T. ACS Nano, 2012, 6 (1): 63.
[84] Hu H, Yu J, Li Y, Zhao J, Dong H. J Biomed. Mater. Res. A, 2012, 100 (1): 141.
[85] Mianehrow H, Moghadam M H, Sharif F, Mazinani S. Int. J. Pharm., 2015, 484 (1/2): 276.
[86] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nano., 2008, 3 (2): 101.
[87] Lee K Y, Buldum G, Mantalaris A, Bismarck A. Macromol. Biosci., 2014, 14 (1): 10.
[88] Yousefi H, Faezipour M, Hedjazi S, Mousavi M M, Azusa Y, Heidari A H. Ind. Crop. Prod., 2013, 43: 732.
[89] Rahmany M B, van Dyke M. Acta Biomater., 2013, 9 (3).
[90] Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger M P. J. Mater. Sci., 2011, 47 (3): 1171.
[91] Zhu W, Li W, He Y, Duan T. Appl. Surf. Sci., 2015, 338: 22.
[92] Parejo P G, Zayat M, Levy D. J. Mater. Chem., 2006, 16 (22): 2165.
[93] Denes A R, Young R A. Holzforschung, 1999, 53: 632.
[94] Lee B H, Kim H J. Polym. Degrad. Stabil., 2006, 91 (5): 1025.
[95] Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A. Holz. Roh. Werkst., 2003, 61 (3): 221.
[96] Xie Y, Krause A, Mai C, Militz H, Richter K, Urban K, Evans P D. Polym. Degrad. Stabil., 2005, 89 (2): 189.
[97] Kiguchi M, Kataoka Y, Matsunaga H, Yamamoto K, Evans P D. J. Wood. Sci., 2006, 53 (3): 134.
[98] Hill C A, Cetin N S, Quinney R F, Derbyshire H, Ewen R J. Polym.Degrad.Stabil., 2001, 72: 133.
[99] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22 (35): 3906.
[100] Zhang Y, Zhuang S, Xu X, Hu J. Opt. Mater., 2013, 36 (2): 169.
[101] Calvo M E, Castro Smirnov J R, Miguez H. J. Polym. Sci., Part B Polym. Phys., 2012, 50 (14): 945.
[102] Valentini L. Mater. Lett., 2015, 148: 204.
[103] Bao W, Fang Z, Wan J, Dai J, Zhu H, Han X, Yang X, Preston C, Hu L. ACS Nano, 2014, 8 (10): 10606.
[104] Jang E, Son K J, Kim B, Koh W G. Analyst, 2010, 135 (11): 2871.
[105] Buenger D, Topuz F, Groll J. Prog. Polym. Sci., 2012, 37 (12): 1678.
[106] Burrs S L, Vanegas D C, Rong Y, Bhargava M, Mechulan N, Hendershot P, Yamaguchi H, Gomes C, McLamore E S. Analyst, 2015, 140 (5): 1466.
[107] Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H. J. Mater. Chem. A, 2014, 2 (2): 326.
[108] Yang S T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A. J. Colloid Interface Sci., 2010, 351 (1):122.
[109] Wu Y, Luo H, Wang H, Wang C, Zhang J, Zhang Z. J. Colloid Interface Sci., 2013, 394: 183.
[110] Ramesha G K, Kumara A V, Muralidhara H B, Sampath S. J. Colloid Interface Sci., 2011, 361 (1): 270.
[111] Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L. Carbohydr. Polym., 2013, 95 (1): 501.
[112] Yang S T, Chen S, Chang Y, Cao A, Liu Y, Wang H. J. Colloid Interface Sci., 2011, 359 (1): 24.
[113] Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah S M, Su X. J. Colloid Interface Sci., 2012, 368 (1): 540.
[114] Chowdhury S, Balasubramanian R. Adv. Colloid Interface Sci., 2014, 204: 35.
[115] Zhang X, Yu H, Yang H, Wan Y, Hu H, Zhai Z, Qin J. J. Colloid Interface Sci., 2015, 437: 277.
[116] Liu X, Zhou Y, Nie W, Song L, Chen P. J. Mater. Sci., 2015, 50 (18): 6113.
[117] Luong N D, Seppälä J. Cellulose, 2015, 22 (3): 1799.
[118] Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L. Nat. Nanotechnol., 2015, 10 (3): 277.
[119] Valentini L, Cardinali M, Fortunati E, Kenny J M. Appl. Phys. Lett., 2014, 105 (15): 153111.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[12] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[15] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.