English
新闻公告
More
化学进展 2016, Vol. 28 Issue (8): 1265-1288 DOI: 10.7536/PC151105 前一篇   

• 综述与评论 •

固体氧化物电解池

赵晨欢, 张文强, 于波*, 王建晨, 陈靖   

  1. 清华大学核能与新能源技术研究院 先进核能技术协同创新中心 北京 100084
  • 收稿日期:2015-11-01 修回日期:2016-03-01 出版日期:2016-08-15 发布日期:2016-05-17
  • 通讯作者: 于波 E-mail:cassy_yu@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21273128,51202123)和教育部长江学者与创新团队计划(IRT13026)资助

Solid Oxide Electrolyzer Cells

Zhao Chenhuan, Zhang Wenqiang, Yu Bo*, Wang Jianchen, Chen Jing   

  1. Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2015-11-01 Revised:2016-03-01 Online:2016-08-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273128, 51202123) and Program for Changjiang Scholars and Innovative Research Team in University (IRT13026)
固体氧化物电解池(SOEC)是一种先进的电化学能量转化装置,可利用清洁一次能源产生的电能和热能,以H2O和/或CO2为原料,高效电解制备氢气或碳氢燃料,有望实现大规模能量高效转化和存储。该技术具有高效、简单、灵活、环境友好等特点,是目前国际能源领域的研究热点。本文就固体氧化电解池技术原理、关键材料、电堆技术、衰减控制和经济竞争力等方面进行分析和介绍,并对其应用前景进行展望。
The rapid growth of energy demand and carbon emission poses unprecedented challenges to sustainable development and economic expansion worldwide. Development of clean energy has become a common choice worldwide. The promising alternative clean energies include solar, wind, geothermal, biomass and nuclear. And research and development in energy conversion and storage have becoming increasingly attractive. Solid oxide electrolyzer cell (SOEC) is an advanced electrochemical energy conversion device, which can produce hydrogen or synthesis gas by highly efficient electrolysis of H2O or CO2+H2O using a high temperature heat and electrical energy. The high temperature heat and electricity could be supplied simultaneously by the clean primary energy (solar, wind or nuclear energy). Also, SOEC can be operated reversibly in fuel cell mode (Solid oxide fuel cell, SOFC) for electricity production when additional electricity is needed. SOEC is a potential technology for large scale energy conversion and storage application due to the advantages of highly efficient, simple, flexible and environmentally friendly features. In this paper, the principle of SOEC is introduced respectively in detail from the perspective of thermodynamic and kinetic analysis. The current state-of-the art key materials used in solid oxide electrolysis tests are summarized, including anode, cathode, electrolyte materials and so on. The recent development in advanced stack technologies are overviewed worlwide, the main degradation modes and mechanisms of SOEC are pointed out and discussed, and the economic competitiveness of SOEC technology is carefully analyzed. On this basis, the potential application prospect of SOEC in the future are given.

Contents
1 Introduction
2 Principle of SOEC
2.1 Compositon of Electrolysis cells
2.2 Thermodynamics of electrolysis
2.3 Kinetics of electrolysis
3 Key materials
3.1 Anode materials
3.2 Cathode materials
3.3 Electrolyte materials
3.4 Other materials
4 Research statuses of SOEC stacks
5 Degradation mechanisms of SOEC
5.1 Oxygen electrode
5.2 Hydrogen electrode
5.3 Electrolyte
6 Analysis of economic competitiveness
7 Technological prospects

中图分类号: 

()
[1] 中华人民共和国国务院(Council of People's Republic of China).节能减排"十二五"规划(Energey Saveing of 12th Five-Year Plan), (2012-10-10).[2016-01-30]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201208/t20120821_65505.html.
[2] Jeremy Rifkin. 第三次工业革命(The Third Industrial Revolution).张体伟(Zhang T W),孙豫宁(Sun Y N)(Trans). 北京:中信出版社(Beijing:Citic Press Group), 2012.
[3] 时璟丽(Shi J L), 高虎(Gao H), 王红芳(Wang H F). 中国能源(Energy of China), 2015, 2:11.
[4] 陈冠益(Chen G Y), 孔韡(Kong W), 徐莹(Xu Y), 李婉晴(Li W Q), 马隆龙(Ma L L), 颜蓓蓓(Yan B B), 陈鸿(Chen H). 浙江大学学报(工学版)(Journal of Zhejiang University(Engineering Science)), 2014, 7:1318.
[5] Stoots C M, O'Brien J E, Condie K G, Hartvigens J J. Inter-national Journal of Hydrogen Energy, 2010, 35(10):4861.
[6] Bierschenk D M, Wilson J R, Barnett S A. Energy Environ. Sci., 2011, 4:944.
[7] Jensen S H, Graves C, Mogensen M, Wendel C, Braun R, Hughes G, Gao Z, Barnett S A. Energy Environ. Sci., 2015, 8:2471.
[8] O'Brien J E,Mckellar M G, Stoots C M, Herring J S, Hawkes J L. Int. J. Hydrogen Energy, 2009, 34(9):4216.
[9] O'Brien J E, Stoots C M, Herring J S, Mckellar M G, Harvego E A, Sohal M S, Condie K G. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy Technology Summary (2010-02-01).[2016-01-30].https://www.researchgate.net/publication/255214193_High_Temperature_Electrolysis_for_Hydrogen_Production_from_Nuclear_Energy_TechnologySummary?ev=auth_pub.
[10] 李汶颖(Li W Y). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2015.
[11] Mougin J, Chatroux A, Couturier K, Petitjean M, Rrytier M, Gousseau G, Lefebyre J F. Energy Procedia, 2012, 29:445.
[12] Ni M. International Journal of Hydrogen Energy, 2009, 34(18):7795.
[13] Ni M. Chemical Engineering Journal, 2010, 164(1):246.
[14] Ni M. International Journal of Hydrogen Energy, 2012, 37(8):6389.
[15] Bu Y F, Zhong Q, Xu D D, Zhao X L, Tan W Y. Journal of Power Sources, 2014, 250:143.
[16] Backhaus-Ricoult M, Adib K, Clair T S, Luerssen B, Gregoratti L, Barinov A. Solid State Ionics, 2008, 179(21):891.
[17] Adler S B. Chem. Rev., 2004, 104:4791.
[18] Sase M, Ueno D, Yashiro K, Kaimai A,Kawada T,Mizusaki J.J. Phys. Chem. Solids, 2005, 66:343.
[19] Chroneos A, Yildiz B. Energy Environ. Sci., 2011, 4:2774.
[20] Huaxin L, Xiaoli C, Shigang C, Yucheng W, Kui X. International Journal of Hydrogen Energy, 2015:7920.
[21] Villarreal I, Jacobson C, Leming A, Matus Y, Visco S, Jonghe L D. Electrochemical and Solid-State Letters, 2003, 6(9):A178.
[22] Yu B, Zhang W Q, Xu J M, Chen J. International Journal of Hydrogen Energy, 2010, 35(7):2829.
[23] Chauveau F, Mougin J, Bassat J M, Mauvy F, Grenier J C. Journal of Power Sources, 2010, 195(3):744.
[24] Ogier T, Bassat J M, Mauvy F, Fourcade S, Grenier J C, Couturier K, Petitjean M, Mougin J. Fuel Cells, 2013, 13(4):536.
[25] Chen K, Ai N, Jiang S P. Journal of the Electrochemical Society, 2010, 157(11):89.
[26] Rossignol C, Ralph J M, Bae J M, Vaughey J T. Solid State Ionics, 2004, 175(1):59.
[27] Tietz F, Sebold D, Brisse A, Schefold J. Journal of Power Sources, 2013, 223:129.
[28] Wei B, Chen K, Wang C C, Zhe L, Jiang S P. Solid State Ionics, 2015, 281:29.
[29] Shao Z P, Sossina M, Haile S M. Nature, 2004, 431:170.
[30] Shao Z P, Sossina M, Haile S M, Jeongmin A, Paul D R, Zhongliang Z, Scott A B. Nature, 2005, 435:795.
[31] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Yang S H. Science, 2011, 9:1383.
[32] 张文强(Zhang W Q), 于波(Yu B), 张平(Zhang P),徐景明(Xu J M). 中国科学:化学(Scientia Sinica Chimica), 2011, 6:9.
[33] Tedmon C S, Spacil H S, Mitoff S P. Journal of The Elec-trochemical Society, 1969, 116(9):1170.
[34] Laguna-Bercero M A, Kinadjan N, Sayers R, Shinawi H E, Greaves C, Skinner S J. Fuel Cells, 2011, 11(1):102.
[35] Chauveau F, Mougin J, Bassat J M, Mauvy F, Grenier J C. Journal of Power Sources, 2010, 195(3):744.
[36] Chroneos A, Parfitt D, Kilner J A, Grimes R W. J. Mater. Chem., 2010, 20(2):266.
[37] Tsekouras G, Irvine J T S. Journal of Materials Chemistry, 2011, 21(25):9367.
[38] Laguna-Bercero M A, Hanifi A R, Monzón H, Cunningham J, Etsell T H. Journal of Materials Chemistry A, 2014, 2(25):9764.
[39] Ting C, Zhou Y, Yuan C, Liu M, Meng X. Journal of Power Sources, 2014, 269:812.
[40] Li J, Zhong C, Meng X, Wu H, Nie H, Zhan Z, Wang S. Fuel Cells, 2014, 14(6):1046.
[41] Sase M, Hermes F, Nakamura T, Yashiro K, Sato K, Mizusaki J. ECS Transactions, 2007, 7(1):1287.
[42] Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H. Solid State Ionics, 2008, 178:1843.
[43] Jeong W H, Bilge Y. Energy & Environmental Science, 2012, 9:8598.
[44] Bentzen J J, Jacobsen T, Skov E. High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors (Eds:Poulsen F W). Danmark:CiNii, 1993.6.
[45] Gool W V, Bottelberghs P H. Journal of Solid States Chemistry,1973, 7(1):59.
[46] Hauch A, Jensen S H, Ramousse S, Mongensen M. Journal of the Electrochemical Society, 2006,153(9):349.
[47] Matsui T, Ozaki A, Kikuchi R, Eguchi K, Singhal S C, Mizusaki J. Electrochemical Society, 2005, 154:1237.
[48] Blennow T P. Master Dissertation of Lund University, 2007.
[49] Marina O A, Pederson L R, Williams M C, Coffey W, Meinhardt K D, Nguyen C D. Journal of the Electrochemical Society, 2007, 154(5):B452.
[50] Tao S W, Irvine J T S. Journal of The Electrochemical Society, 2004, 151(2):A252.
[51] 朱星宝(Zhu X B).哈尔滨工业大学博士论文(Doctor Dissertation of Haerbin Institute of Technology), 2008.
[52] Xu S, Chen S, Li M, Xie K, Wang Y, Wu Y C. Journal of Power Sources, 2013, 239:332.
[53] Li Y, Wu G, Ruan C, Qi Z, Wang Y, Winston D. Journal of Power Sources, 2014, 253:349.
[54] Savaniu C D, Irvine J T S. Journal of Materials Chemistry, 2009, 19(43):8119.
[55] Singhal S. Materials Today, 2002, 5(12):55.
[56] Eguchi K, Hatagishi T, Arai H. Solid State Ionics, 1996, 86:1245.
[57] Xie K, Zhang Y, Meng G, Irvine J T S. Energy & Environmental Science, 2011, 4(6):2218.
[58] Hauch A, Ebbesen S D, Jensen S H, Mongensen M. Journal of Materials Chemistry, 2008, 18(20):2331.
[59] Fergus J. Solid State Ionics, 2004, 171:1.
[60] Piccardo P, Gannon P, Chevalier S, Viviani M, Barbucci A, Caboche G, Amendola R, Fontana S. Surf. Coat. Technol., 2007, 202:1221.
[61] Yang Z, Xia G, Stevenson J. J. Power Sources, 2006, 160:1104.
[62] Jablonski P, Alman D. Int. J. Hydrogen Energy, 2007, 32:3705.
[63] 吴小芳(Wu X F),张文强(Zhang W Q),于波(Yu B),郭绪强(Guo X Q),徐景明(Xu J M).稀有金属材料与工程(Rare Metal Materials and Engineering), 2011, 40(3):1555.
[64] Yang C H, Coffin A, Chen F L. International Journal of Hydrogen Energy, 2010, 35:3221.
[65] Santacreu P O, Girardon P, Zahid M, Van Herle J, Wyser A H, Mougin J, Shemet V. ECS Transactions, 2011, 35(1):2481.
[66] Xu Y, Wen Z, Wang S, Wen T. Solid State Ionics, 2011, 192(1):561.
[67] 吴晓芳(Wu X F), 中国石油大学硕士毕业论文(Master Dissertation of China University of Petroleum), 2014.
[68] Lin C K, Huang L H, Chiang L K, Chyou Y P. Journal of Power Sources, 2009, 192(2):515.
[69] Singh R N.International Journal of Applied Ceramic Technology, 2007, 4(2):134.
[70] Nielsen K A, Solvang M, Nielsen S B L, Dinesen A R, Beeaff D, Larsen P H. Journal of the European Ceramic Society, 27(s 2/3):1817.
[71] Fergus J W. Journal of Power Sources, 2005, 147(1/2):46.
[72] Nishiura H, Suzuki R O, Ono K. Journal of the American Ceramic Society, 1998, 81(8):2181.
[73] Duquette J, Petric A. Journal of Power Sources, 2004, 137(1):71.
[74] Chou Y S, Stevenson J W. Journal of Materials Research, 2003, 18(9):2243.
[75] Singh P, Yang Z, Viswanathan V, Stevenson J W. Journal of Materials Engineering and Performance, 2004, 13(3):287.
[76] Chou Y S, Stevenson J W, Singh P. Journal of Power Sources, 2005, 152:168.
[77] Spacil H S, Tedmon C S. Electrochem. Soc.,1969,116:1618.
[78] Donitz W, Dietrich G, Erdle E,Streicher R. Hydrogen Energy, 1988, 13:283.
[79] O'Brien J E, Stoots C M, Herring J S, Lessing P A. Journal of Fuel Cell Science and Technology, 2005, 2:156.
[80] Stoots C M. High-temperature Co-electrolysis of H2O and CO2 for Syngas Production. Hawaii:Scitech Connect, 2006, 13.
[81] Schefold J, Brisse A, Tietz F. Journal of the Electrochemical Society, 2012,159(2):A137.
[82] Ebbesen S D, Høgh J, Nielsen K A. International Journal of Hydrogen Energy, 2011, 36(13):7363.
[83] Zhang W Q, Yu B, Xu J. Fule & Energy Abstract, 2012, 37(1):837842.
[84] Carl S, James O, Joseph H. International Journal of Hydrogen Energy, 2009, 34:4208.
[85] Zhang X, O'Brien J E, Tao G, Zhou C, Housley G K. Journal of Power Sources, 2015, 297:90.
[86] Zhang X, O'Brien J E, O'Brien R C, Hartvigsen J J, Tao G, Housley G K.International Journal of Hydrogen Energy, 2013, 38(1):20.
[87] O'Brien J E, Mckellar M G, Harvego E A, Stoots C M.International Journal of Hydrogen Energy, 2010, 35(10):4808.
[88] Blum L, de Haart L G J B, Malzbender J, Menzler N H, Remmel J, Steinberger W. Journal of Power Sources, 2013, 241:477.
[89] Nguyen V N, Fang Q, Packbier U, Blum L. International Journal of Hydrogen Energy, 2013, 38(11):4281.
[90] Petipas F, Brisse A, Bouallou C. Journal of Power Sources, 2013, 239:584.
[91] Mougin J, Mansuy A, Chatroux A, Gousseau G, Petitjean M, Reytier M. Fuel Cells, 2013,13(4):623.
[92] Zhang H, Zhang H, Li X, Mai Z, Zhang J. Energy & Environmental Science, 2011,4(5), 1676.
[93] 陈建颖(Chen J Y),曾凡蓉(Zeng F R), 王绍荣(Wang S R),等. 化学进展(Progress in Chemistry), 2011, 23(2/3):463.
[94] Le S, Wang S, Qian J, Ye X, Wen T. International Journal of Hydrogen Energy, 2013, 38(11):4272.
[95] 官万兵(Guan W B). 硅酸盐通报(Bulletin of Chinese Ceramic Society), 2014, 32:1140.
[96] Guan W B, Zhai H J, Jin L, Li T S, Wang W G. Fuel Cells, 2011, 11(3):445.
[97] Herring J S, O'Brien J E, Stoots C M, Hawkes G L, Hartvigsen J J, Shahnam M. International Journal of Hydrogen Energy, 2007, 32(4):440.
[98] Sohal M S, O'Brien JE, Stoots C M, Sharma V I, Yildiz B, Virkar A. Cheminform., 2010, 9(43):377.
[99] Hauch A, Jensen S H, Bilde-Sørensen J B, Mongensen M. Journal of the Electrochemical Society, 2007, 154(7):A619.
[100] W Wang W, Huang Y, Jung S, Vohs J M, Gorte R J. Journal of the Electrochemical Society, 2006, 153(11):A2066.
[101] Matsuzaki Y, Yasuda I. Journal of the Electrochemical Society, 2001, 148(2):A126.
[102] Borca C N, Xu B, Komesu T, Jeong H K, Liu M T, Liou S H.Surface Science, 2002, 512(1):L346.
[103] Dulli H, Plummer E W, Dowben P A, Choi J,Liou S H.Applied Physics Letters, 2000, 77(4):570.
[104] Savaniu C D, Irvine J T S. Journal of Materials Chemistry, 2009, 19(43):8119.
[105] Sohal M S, O'Brien J E, Stoots C M, Herring J S, Hartvigsen J, Larsen D, Elangovan S, Carter J D, Sharma V I, Yildiz B. Critical Causes of Degradation in Integrated Laboratory Scale Cells during high-Temperature Electrolysis. (2009-05-01)[2016-01-30\]. http://www.osti.gov/scitech/biblio/961923.
[106] Fergus J W. International Journal of Hydrogen Energy, 2007, 32(16):3664.
[107] Stanislowski M, Froitzheim J, Niewolak L, Quadakkers W J, Hilpert K, Markus T. Journal of Power Sources, 2007, 164(2):578.
[108] Zhen Y, Tok A I Y, Boey F Y C, Jiangb S P. Electrochemical and Solid-State Letters, 2008, 11(3):B42.
[109] Virkar A V. International Journal of Hydrogen Energy, 2010, 35(18):9527.
[110] Fleig J. Annual Review of Materials Research, 2003, 33(1):361.
[111] Jacobsen T, Mogensen M. ECS Trans., 2008, 13:259.
[112] Rashkeev S N, Glazoff M V. J. Hydrogen Energy, 2012, 37:1280.
[113] Liang M, Yu B, Wen M, Chen J, Xu J, Zhai Y. J. Power Sources, 2009, 190:341.
[114] Backhaus-Ricoult M, Adib K, Clair T S, Luerssen B, Gregoratti L, Barinov A. Solid State Ionics, 2007, 179:891.
[115] Keane M, Mahapatra M K, Verma A, Singh P. J. Hydrogen Energy, 2012, 37:16776.
[116] Zheng Y, Li Q, Chen T, Wu W, Cheng X, Wei G W. International Journal of Hydrogen Energy, 2015, 40(6):2460.
[117] Hauch A, Ebbesen S D, Jensen S H, Mogensen. J. Electrochem. Soc., 2008, 155(11):1184.
[118] Schefold J, Brisse A, Tietz F. J. Electrochem. Soc., 2012, 159:A137.
[119] Hjalmarsson P, Sun X, Liu Y L, Chen M. J. Power Sources, 2013, 223:349.
[120] Borglum B. Ecs Transactions, 2009, 17(1):63.
[121] Lay-Grindler E, Laurencin J, Villanova J, Cloetens P, Bleuet P, Mansuy A. Journal of Power Sources, 2014, 269:927.
[122] Osinkin D, Kuzin B, Bogdanovich N. Electrolyte. Russ J. Electrochem., 2010, 46:41.
[123] Ebbesen S D, Høgh J, Nielsen K A, Nielsen J U, Mogensen M J. Fuel & Energy Abstract, 2011, 36:7363.
[124] Tietz F, Sebold D, Brisse A, Schefold J. J. Power Sources, 2013, 223:129.
[125] Knibbe R, Traulsen M L, Hauch A, Ebbesen S D, Mogensen M. J. Electrochem. Soc., 2010, 157(8):1209.
[126] Tietz F, Sebold D, Brisse A, Schefold J. J. Power Sources, 2013, 223:129.
[127] Rami S E, Hasan Ozcan, Ibrahim Dincer. International Journal of Hydrogen Energy, 2015, 40:11168.
[128] Ebbesen S D, Jensen S H, Hauch A, Mogensen M B. Chemical Review, 2014, 114(21):10697.
[129] Ni M, Leung M K H, Leung D C. J. Hydrogen Energy, 2007, 32:4648.
[130] Raissi A, Block D L. IEEE Power Energy Mag., 2004, 2:40.
[131] Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L. Energy Environ. Sci., 2010, 3:1382.
[132] Macelroy J M D. Ambio, 2016, 45(1):5.
[133] Graves C, Ebbesen S D, Mogensen M, Lackner K S. Renewable Sustainable Energy Rev., 2011, 15:1.
[134] Becker W L, Braun R J, Penev M, Melaina M. Energy, 2012, 47:99.
[135] Rivera-Tinoco R, Mansilla C, Bouallou C. Energy Conversion and Management, 2010, 51:2623.
[136] Minh N Q, Mogensen M B. Electrochem. Soc. Interface, 2013, 22:55.
[137] Joseph D S, Michael R. Innovative Management of Carbon Emmmisions from Fossil Plants(Eds:Pilmer J), Provo, 2010. 25.
[1] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[2] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[3] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[4] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[5] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[6] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[7] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[8] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[9] 金翼, 孙信, 余彦, 丁楚雄, 陈春华, 官亦标. 钠离子储能电池关键材料[J]. 化学进展, 2014, 26(04): 582-591.
[10] 曹天宇, 史翊翔, 蔡宁生. 固体氧化物电解池NOx电化学还原技术[J]. 化学进展, 2013, 25(10): 1648-1655.
[11] 王振, 于波*, 张文强, 陈靖, 徐景明. 高温共电解H2O/CO2制备清洁燃料[J]. 化学进展, 2013, 25(07): 1229-1236.
[12] 张华民 张宇 刘宗浩 王晓丽. 液流储能电池技术研究进展[J]. 化学进展, 2009, 21(11): 2333-2340.
[13] 梁明德,于波,文明芬,陈靖,徐景明,翟玉春. YSZ电解质薄膜的制备方法*[J]. 化学进展, 2008, 20(0708): 1222-1232.
[14] 张文强,于波,陈靖,徐景明. 高温固体氧化物电解制氢技术*[J]. 化学进展, 2008, 20(05): 778-788.
[15] 周理,孙艳,苏伟,周亚平. 纳米碳管储能的化学原理与储存容量研究*[J]. 化学进展, 2005, 17(04): 660-665.
阅读次数
全文


摘要

固体氧化物电解池