English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 744-753 DOI: 10.7536/PC151101 前一篇   后一篇

• 综述与评论 •

手性PPCPs环境行为与效应的对映体选择性

尹立娜1,2, 王斌1*, 马瑞雪1, 袁宏林2, 余刚1   

  1. 1. 清华大学环境学院 环境模拟与污染控制国家重点联合实验室 新兴有机污染物控制北京市重点实验室 北京 100084;
    2. 西安建筑科技大学环境与市政工程学院 西安 710055
  • 收稿日期:2015-11-01 修回日期:2016-02-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 王斌 E-mail:thuwb@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21577075,21207076)和清华大学自主科研项目(No.20131089193)资助

Enantioselective Environmental Behavior and Effect of Chiral PPCPs

Yin Lina1,2, Wang Bin1*, Ma Ruixue1, Yuan Honglin2, Yu Gang1   

  1. 1. Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;
    2. School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2015-11-01 Revised:2016-02-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21577075, 21207076) and the Tsinghua University Initiative Scientific Research Program(No.20131089193).
新型环境有机污染物——药物和个人护理品(PPCPs)中大部分是手性物质,以外消旋体形式或单一对映体形式使用,经过一系列生物转化过程对映体组分会发生改变。复杂环境介质中手性PPCPs分离分析难度大从而限制了相关研究,手性PPCPs生物降解的立体选择性和毒理效应的立体选择性使潜在的环境行为和风险更加复杂。欧美、日本等发达国家已逐渐关注环境中手性PPCPs的立体选择性,并开展了一系列手性药物环境行为和效应的对映体选择性研究。相比之下,我国环境中手性PPCPs研究尚欠缺,亟待开展广泛深入的研究。本文综述了PPCPs的手性特征、分析方法、手性PPCP环境行为和效应选择性,分析了对映体选择性特征在污染源解析中的潜在应用,讨论了目前手性PPCPs环境行为和效应研究的局限性,并展望了研究趋势。
Pharmaceuticals and personal care products (PPCPs) as emerging organic contaminants are mostly chiral compounds. They are usually consumed as racemic compounds or single enantiomers. Biological degradation process can lead to stereoselective enrichment of enantiomer of chiral PPCPs. Due to the difficulties in chiral separation and quantification of enantiomers in the complex environmental matrices, their environmental behavior study has been limited. Enantioselective biodegradation and ecotoxicity of chiral PPCPs tend to make their potential environmental behavior and risk more complicated. Recently, enantiomeric selectivity of chiral PPCPs in environment has gradually caused attention of environmental researchers in developed countries, such as Europe, North America and Japan. Effort has been devoted in studying enantiomeric selectivity of environmental behavior and effect about chiral PPCPs. However, in China, there are very few related studies. It is necessary to carry out more related studies. Consequently, this paper reviews chiral signature of PPCPs, analytical methods, environment behavior and effect selectivity of chiral PPCPs, as well as their potential application in pollution source apportionment. Limitation of current research on environmental behavior and effect of chiral PPCPs is also discussed. The prospect of environmental study on chiral PPCPs in the future is also proposed.

Contents
1 Introduction
2 Manufacture and use of chiral pharmaceuticals
3 Chiral signature of PPCPs
4 Analytical methods of chiral PPCPs
5 Occurrence and environment behavior of chiral PPCPs
6 Toxicological effects of chiral PPCPs
7 Application in source analysis
8 Conclusion and outlook

中图分类号: 

()
[1] Fatta-Kassinos D. Environ. Sci. Pollut. R, 2010, 17 (2): 519.
[2] Liu J L, Wong M H. Environ. Int., 2013, 59: 208.
[3] Wong C S. Anal. Bioanal. Chem., 2006, 386 (3): 544.
[4] 付长华(Fu C H), 江鸿(Jiang H), 杨大龙(Yang D L). 第六届中国药师大会(Sixth Conference of Chinese Pharmacist), 江苏(JiangSu Province), 2014.
[5] Kasprzyk-Hordern B. Chem. Soc. Rev., 2010, 39 (11): 4466.
[6] Ribeiro A R, Maia A S, Cass Q B, Tiritan M E. J. Chromatogr. B, 2014, 968: 8.
[7] Harner T, Wiberg K, Norstrom R. Environ. Sci. Technol., 2000, 34 (1): 218.
[8] Buser H R, Poiger T, Muller M D. Environ. Sci. Technol., 1999, 33 (15): 2529.
[9] Fono L, Sedlak D L. Abstracts of Papers of the American Chemical Society, 2005, 230: 1534.
[10] Ribeiro A R, Castro P M, Tiritan M E. Environ. Chem. Lett., 2012, 10 (3): 239.
[11] Nikolai L N, McClure E L, MacLeod S L, Wong C S. J. Chromatogr. A, 2006, 1131 (1): 103.
[12] Buser H R, Poiger T, Müller M D. Environ. Sci. Technol., 1999, 33 (15): 2529.
[13] Matamoros V, Hijosa M, Bayona J M. Chemosphere, 2009, 75 (2): 200.
[14] MacLeod S L, Wong C S. Water Res., 2010, 44 (2): 533.
[15] López-Serna R, Kasprzyk-Hordern B, Petrovi? M, Barceló D. Anal. Bioanal. Chem., 2013, 405 (18): 5859.
[16] MacLeod S L, Sudhir P, Wong C S. J. Chromatogr. A, 2007, 1170 (1/2): 23.
[17] Ribeiro A R, Santos L H, Maia A S, Delerue-Matos C, Castro P M, Tiritan M E. J. Chromatogr. A, 2014, 1363: 226.
[18] Morante-Zarcero S, Sierra I. Chirality, 2012, 24 (10): 860.
[19] Svan A, Hedeland M, Arvidsson T, Jasper J T, Sedlak D L, Pettersson C E. J. Chromatogr. A, 2015, 1409: 251.
[20] Wistuba D, Schurig V. J. Chromatogr. A, 2000, 875 (1): 255.
[21] Ribeiro A, Gonçalves V F, Maia A, Ribeiro C, Castro P L, Tiritan M. Environ. Chem. Lett., 2015, 13 (2): 203.
[22] Matamoros V, Uggetti E, García J, Bayona J M. J. Hazard. Mater., 2016, 301: 197.
[23] Bagnall J, Malia L, Lubben A, Kasprzyk-Hordern B. Water Res., 2013, 47 (15): 5708.
[24] Hashim N H, Khan S J. J. Chromatogr. A, 2011, 1218 (29): 4746.
[25] Baker D R, Kasprzyk-Hordern B. Sci. Total Environ., 2013, 454/455: 442.
[26] Wang L, McDonald J A, Khan S J. J. Chromatogr. A, 2013, 1303: 66.
[27] Li Z, Gomez E, Fenet H, Chiron S. Chemosphere, 2013, 90 (6): 1933.
[28] Gasser G, Pankratov I, Elhanany S, Werner P, Gun J, Gelman F, Lev O. Chemosphere, 2012, 88 (1): 98.
[29] Suzuki T, Kosugi Y, Hosaka M, Nishimura T, Nakae D. Environ. Toxicol. Chem., 2014, 33 (12): 2671.
[30] Hashim N H, Nghiem L D, Stuetz R M, Khan S J. Water Res., 2011, 45 (18): 6249.
[31] Jammer S, Voloshenko A, Gelman F, Lev O. Environ. Sci. Technol., 2014, 48 (6): 3310.
[32] Evans S E, Davies P, Lubben A, Kasprzyk-Hordern B. Anal. Chim. Acta, 2015, 882: 112.
[33] Song H, Zeng X, Yu Z, Zhang D, Cao S, Shao W, Sheng G, Fu J. Environ. Sci. Pollut. R, 2015, 22 (3): 1679.
[34] Berset J D, Kupper T, Etter R, Tarradellas J. Chemosphere, 2004, 57 (8): 987.
[35] Fono L J, Sedlak D L. Environ. Sci. Technol., 2005, 39 (23): 9244.
[36] Morante-Zarcero S, Sierra I. J. Pharmaceut. Biomed., 2012, 62: 33.
[37] Barreiro J C, Vanzolini K L, Madureira T V, Tiritan M E, Cass Q B. Talanta, 2010, 82 (1): 384.
[38] Ribeiro A R, Afonso C M, Castro P M L, Tiritan M E. Ecotoxicol. Environ. Saf., 2013, 87: 108.
[39] Ribeiro A R, Afonso C M, Castro P M, Tiritan M E. Environ. Chem. Lett., 2013, 11 (1): 83.
[40] Barclay V K H, Tyrefors N L, Johansson I M, Pettersson C E. J. Chromatogr. A, 2011, 1218 (33): 5587.
[41] Barclay V K H, Tyrefors N L, Johansson I M, Pettersson C E. J. Chromatogr. A, 2012, 1227: 105.
[42] Stanley J K, Ramirez A J, Mottaleb M, Chambliss C K, Brooks B W. Environ. Toxicol. Chem., 2006, 25 (7): 1780.
[43] Nikolai L N, McClure E L, MacLeod S L, Wong C S. J. Chromatogr. A, 2006, 1131 (1/2): 103.
[44] Kunkel U, Radke M. Water Res., 2012, 46 (17): 5551.
[45] Khan S J, Wang L L, Hashim N H, McDonald J A. Chirality, 2014, 26 (11): 739.
[46] Huang Q, Zhang K, Wang Z, Wang C, Peng X. Anal. Bioanal. Chem., 2012, 403 (6): 1751.
[47] Stanley J K, Ramirez A J, Chambliss C K, Brooks B W. Chemosphere, 2007, 69 (1): 9.
[48] De Andres F, Castaneda G, Rios A. Chirality, 2009, 21 (8): 751.
[49] Dai G, Wang B, Huang J, Dong R, Deng S, Yu G. Chemosphere, 2015, 119: 1033.
[50] Daneshvar A, Aboulfadl K, Viglino L, Broséus R, Sauvé S, Madoux-Humery A S, Weyhenmeyer G A, Prévost M. Chemosphere, 2012, 88 (1): 131.
[51] Kawashima H, Murakami M. Atmos. Environ., 2014, 89: 140.
[52] Aboul-Enein H Y, Ali I. Toxicological & Environmental Chemistry, 2004, 86 (1): 1.
[53] Li A, Jang J K, Scheff P A. Environ. Sci.Technol., 2003, 37 (13): 2958.
[54] 廖勇(Liao Y), 赵扬(Zhao Y), 潘灿平(Pan C P). 农药科学与管理(Pesticide Science and Administration), 2008, 29 (1): 47.
[55] Bidleman T F, Jantunen L M, Harner T, Wiberg K, Wideman J L, Brice K, Su K, Falconer R L, Aigner E J, Leone A D, Ridal J J, Kerman B, Finizio A, Alegria H, Parkhurst W J, Szeto S Y. Environ. Pollut., 1998, 102 (1): 43.
[56] Bidleman T F, Jantunen L M, Kurt-Karakus P B, Wong F. Atmospheric Pollution Research, 2012, 3 (4): 371.
[57] Upadhyay N, Sun Q, Allen J O, Westerhoff P, Herckes P. Water Res., 2011, 45 (3): 1071.
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[8] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[9] 周明浩, 姜爽, 张天永, 史永宏, 金雪, 段鹏飞. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展, 2020, 32(4): 361-370.
[10] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[11] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[12] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[13] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[14] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[15] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.