English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 754-762 DOI: 10.7536/PC151047 前一篇   

• 综述与评论 •

基于零价铝的氧化/还原技术在水处理中的应用

杨世迎1,2,3*, 郑迪1,3, 常书雅1,3, 石超1,3   

  1. 1. 海洋环境与生态教育部重点实验室 青岛 266100;
    2. 山东省海洋环境地质工程重点实验室 青岛 266100;
    3. 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2015-10-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 杨世迎 E-mail:shiningpup@hotmail.com

Zero Valent Aluminum Based Oxidation/Reduction Technology Applied in Water Treatment

Yang Shiying1,2,3*, Zheng Di1,3, Chang Shuya1,3, Shi Chao1,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering(MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2015-10-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
利用零价金属(ZVMs)处理环境污染物一直是环境治理领域的研究热点,其中以零价铁(ZVI)的研究最为广泛。近年来,零价铝(ZVAl)因其具有比ZVI更低的氧化还原电位(E0(Al3+/Al0)=-1.662 V, E0(Fe2+/Fe0)=-0.44 V)及其两性性质(反应pH可以拓展到碱性)而开始受到关注。目前环境领域关于ZVAl的研究主要集中于两类:以零价铝/氧/酸(ZVAl/O2/H+)体系为核心的氧化体系和以零价铝/无氧(ZVAl/anaerobic)体系为核心的还原体系,其中前者因原位产生过氧化氢构成类Fenton氧化体系而备受关注。研究已发现,基于ZVAl的氧化/还原技术可有效去除酚类、偶氮染料、有机卤化物等有机污染物和Cr(Ⅵ)、As(Ⅲ)等无机污染物,且超声、微波、外加多金属氧酸盐(POM)、Fe2+等辅助手段对该技术有一定辅助效果。本文分别就基于ZVAl的氧化体系和还原体系,对其反应机理及去除水中污染物的国内外最新研究进展进行了综述和展望,以期促进ZVAl水处理技术的发展。铝作为地壳中最丰富的金属元素,ZVAl不存在像ZVI高pH值时产生沉淀的问题,相信随着ZVAl表面氧化膜这一制约因素的逐渐解决,其在水处理领域将有更广泛的应用。
Zero valent metal (ZVMs) has been the most interesting point for the treatment of environmental pollutants and zero valent iron (ZVI) is the most representative. In recent years, zero valent aluminum (ZVAl), another kind of ZVMs, is starting to be paid more attention due to its lower redox potential than ZVI (E0(Al3+/Al0)=-1.662 V, E0(Fe2+/Fe0)=-0.44 V) and its amphoterism characteristic (the reaction pH can be extended to alkaline range). At present, the research mainly focuses on the oxidation system of ZVAl/O2/H+ and the reduction system of ZVAl/anaerobic. And the former has garnered particular attention by in-situ producing hydrogen peroxide to form Fenton-like oxidation reaction. The studies of ZVAl-based oxidation or reduction technology have found that organic contaminants such as phenolics, azo dyes, organic halide, and inorganic contaminants such as Cr(Ⅵ) and As(Ⅲ), can be effectively removed. And some auxiliary means such as ultrasonic, microwave, plus polyoxometalate (POM), Fe2+ have effective influences on this technology. In this review, the reaction mechanism and the latest research progress of oxidation and reduction systems based on of ZVAl are summarized and prospected. Not like ZVI, ZVAl as the most abundant metallic element in the earth's crust, don't have the problem of producing the precipitate under high pH condition. And it is believed that ZVAl based oxidation or reduction technology will be more widely used in water treatment with the gradual solution of the restricted factor of the surface oxide film.

Contents
1 Introduction
2 Oxidative removal of pollutants by ZVAl
2.1 ZVAl/O2/H+ system
2.2 Assisted ZVAl/O2/H+ system
2.3 Bimetallic system
3 Reductive removal of pollutants by ZVAl
3.1 ZVAl direct reduction pollutants
3.2 Bimetallic system
4 Conclusion and outlook

中图分类号: 

()
[1] Liu W J, Qian T T, Jiang H. Chem. Eng. J., 2014, 263: 448.
[2] Zhou D, Li Y, Zhang Y B, Zhang C, Li X F, Chen Z L, Huang J Y. J. Contam. Hydrol., 2014, 168: 1.
[3] Cong L J, Guo J, Liu J S, Shi H Y, Wang M H. J. Environ. Manage., 2015, 150: 451.
[4] Bokare A D, Choi W. Environ. Sci. Technol., 2009, 43 (18): 7130.
[5] Wen G, Wang S J, Ma J, Huang T L, Liu Z Q, Zhao L, Su J F. J. Hazard. Mater., 2014, 265: 69.
[6] Xiong Z K, Lai B, Yang P, Zhou Y X, Wang J L, Fang S P. J. Hazard. Mater., 2015, 297: 261.
[7] Cai M Q, Su J, Zhua Y Z, Wei X Q, Jin M C, Zhang H J, Dong C Y, Wei Z S. Ultrason. Sonochem., 2016, 28: 302.
[8] 王彦斌(Wang Y B), 赵红颖(Zhao H Y), 赵国华(Zhao G H), 王宇晶(Wang Y J), 杨修春(Yang X C). 化学进展(Progress in Chemistry), 2012, 25(8): 1246.
[9] Zhang Y B, Liu Y W, Jing Y W, Zhao Z, Quan X. J. Environ. Sci., 2012, 24: 720.
[10] Kim J H, Tratnyek P G, Chang Y S. Environ. Sci. Technol., 2008, 42: 4106.
[11] Kanel S R, Greneche J M, Choi H. Environ. Sci. Technol., 2006, 40 (6) : 2045.
[12] Ling L, Pan B, Zhang W. Water Res., 2015, 71: 274.
[13] Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.
[14] Cho D W, Song H, Schwartz F W, Kim B, Jeon B H. Chemosphere, 2015, 125: 41.
[15] Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24 (2) : 314.
[16] 唐孟姣(Tang M J), 薛秀玲(Xue X L), 赖小丽(Lan X L). 环境化学(Environmental Chemistry),2015, 34(7): 1350.
[17] Wang A Q, Guo W, Hao F. Ultrason. Sonochem., 2014, 21 (2) : 572.
[18] Liu W P, Zhang H H, Cao B P, Lin K, Gan J. Water Res., 2011, 45: 1872.
[19] Lin K D, Cai J J, Suna J Q, Xue X L. J. Chem. Technol. Biotechnol., 2013, 88 (12) : 2181.
[20] 张宁(Zhang N), 邹华(Zou H), 吴倩云(Wu Q Y),朱荣(Zhu R). 环境化学(Environmental Chemistry), 2015, 34(7): 1343.
[21] Cai M Q, Wei X Q, Song Z J, Jim M C. Ultrason. Sonochem., 2015, 22: 167
[22] 王小龙(Wang X L). 湖南大学硕士论文(Master Dissertation of Hunan University), 2012
[23] Wu C C, Hus L C, Chiang P N. Water Res., 2013, 47 (7) : 2583.
[24] Cheng Z, Fu F, Pang Y, Tang B, Lu J W. Chem. Eng. J., 2015, 260: 284.
[25] Lien H L, Wilkin R. Environ. Sci. Technol., 2002, 36: 4436.
[26] Liu X, Fan J H, Ma L M. Chem. Eng. J., 2014, 236: 274.
[27] Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.
[28] Kang J W, Hung H M, Lin A, Hoffmann M R. Environ. Sci. Technol. 1999, 33: 3199.
[29] Hu E D, Cheng H F. Water Res., 2014, 57: 8.
[30] Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43: 5015.
[31] Ardo S G, Nelieu S, Ona-Nguema G, Delarue G, Brest J, Pironin E, Morin G. Environ. Sci. Technol., 2015, 49: 4506.
[32] Qiang Z M, Chang J H, Huang C P. Water Res., 2003, 37: 1308.
[33] Kim J Y, Lee J Y, Love D C, Sedlak D L, Yoon J, Nelson K L. Environ. Sci. Technol., 2011, 45 (16) : 6978.
[34] Lien H L, Zhang W X. J. Environ. Eng., 2002, 128:791.
[35] Murphy A P. Nature, 1991, 350: 223.
[36] 傅强根(Fu Q G), 胡勇有(Hu Y Y). 环境科学学报(Acta Scientiae Circumstantiae), 2013, 33(6): 1527.
[37] 石超(Shi C). 中国海洋大学硕士论文(Master Dissertation of Ocean University of China), 2015
[38] 杨世迎(Yang S Y), 石超(Shi C), 徐婷(Xu T), 郑迪(Zheng D). 环境化学(Environmental Chemistry), 2015, 34(10): 1785.
[39] Patricia T, Jorge G I, Ruben V M. Int. J. Electrochem. Sci., 2014, 9: 2556.
[40] Lien H L, Chia C Y, Lee Y C. Chemosphere, 2010, 80: 888.
[41] HanY L, Yan W L. Water Res., 2014, 66: 149.
[42] Lee H, Yoo H Y, Choi J, Nam I H, Lee S, Lee S, Kim J H, Lee C, Lee J. Environ. Sci. Technol., 2014, 48: 8086.
[43] Lien H L, Zhang W X. Chemosphere, 2002, 49: 371.
[44] Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73: 692.
[45] Fu F L, Cheng Z H, Dionysios D, Tang B. J. Hazard. Mater., 2015, 298: 261.
[46] Yang B,Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189: 76.
[47] Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302: 437.
[48] Huang C C, Lo S L, Lien H L. Chem. Eng. J., 2015, 260: 284.
[49] Smith R W. Coord. Chem. Rev., 1996, 149: 81.
[50] US EPA, Drinking water standards and Health Advisories Tables [EB/OL].[2014-04-01]. http://water.epa.gov/drink/standards/hascience.cfm#dw-standards
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[10] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[11] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[12] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[13] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[14] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[15] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.