English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 450-458 DOI: 10.7536/PC151026 前一篇   后一篇

• 综述与评论 •

催化剂的孔道限域效应

薛丽君, 张迪, 魏杰, 刘欣梅*   

  1. 中国石油大学(华东) 重质油国家重点实验室 中国石油催化重点实验室 青岛 266580
  • 收稿日期:2015-10-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 刘欣梅 E-mail:lxmei@upc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21376267)、山东省自然科学基金项目(No. 2013ZRE28069)和中央高校基本科研业务费专项资金(No. 14CX06106A)资助

Pore Confinement Effects of Catalysts

Xue Lijun, Zhang Di, Wei Jie, Liu Xinmei*   

  1. State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum, Qingdao 266580, China
  • Received:2015-10-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21376267), the Shandong Province Natural Science Foundation of China(No. 2013ZRE28069)and the Fundamental Research Funds for the Central Universities(No. 14CX06106A).
限域孔道可以调控催化剂的表面电子分布和几何结构,进而影响催化剂的活性、选择性和稳定性.本文结合理论计算和实验方法,从热力学、动力学、几何效应以及电子转移等角度出发,阐明了不同限域体系中催化剂活性组分和反应分子特性的差异,揭示了限域孔道对反应物种扩散、吸附和反应等过程的影响规律,以期为催化剂的微观结构设计和反应性能调控提供借鉴.
The surface electronic distribution and geometric construction of catalysts can be regulated by confined pore canals, which will affect the activity, selectivity and stability of catalysts. Combined with theoretical calculations and experimental methods, from the perspectives of thermodynamics, kinetics, geometric effect and electron transfer, this review illustrates the differences of the active components of catalysts and the characteristics of reaction molecules in different confined systems, and reveals the influence of confined pore canals on the diffusion, adsorption and reaction of reaction species. It aims to provide a reference for the microstructure design and performance control of catalysts.

Contents
1 Introduction
2 Pore confinement effects on diffusion
3 Pore confinement effects on adsorption
4 Pore confinement effects on catalytic reaction
5 Conclusion

中图分类号: 

()
[1] Derouane E G, André J M, Lucas A A. Chem. Phys. Lett., 1987, 137 (4): 336.
[2] Derouane E G, Andre J M, Lucas A A. J. Catal., 1988, 110 (1): 58.
[3] Abouelnasr M K, Smit B. Phys. Chem. Chem. Phys., 2012, 14 (33): 11600.
[4] Boekfa B, Pantu P, Probst M, Limtrakul J. J. Phys. Chem. C, 2010, 114 (35): 15061.
[5] Hua B Y, Wang J, Wang K, Li X, Zhu X J, Xia X H. Chem. Commun., 2012, 48 (17): 2316.
[6] Liu X, Wang A, Wang X, Mou C Y, Zhang T. Chem. Commun., 2008, 27: 3187.
[7] Bhide S Y, Ghosh D, Yashonath S, Ananthakrishna G. Curr. Sci. India, 2004, 87 (7): 971.
[8] Yashonath S, Ghorai P K. J. Phys. Chem. B, 2008, 112 (3): 665.
[9] June R L, Bell A T, Theodorou D N. J. Phys. Chem., 1992, 96 (3): 1051.
[10] Barrer R M. Chem-Ing-Tech, 1980, 52 (4): 366.
[11] Yashonath S, Santikary P. J. Phys. Chem., 1994, 98 (25): 6368.
[12] Yashonath S. Faraday Discuss., 1997, 106: 105.
[13] Rajappa C, Yashonath S. J. Phys. Chem. B, 1997, 101 (40): 8035.
[14] Rajappa C, Yashonath S. J. Chem. Phys., 1999, 110 (12): 5960.
[15] 陈爱城 (Chen A C), 陈胜利 (Chen S L), 娄亚峰 (Lou Y F), 陈静 (Chen J). 石油学报 (石油加工)(Acta Petrolei Sinica (Petroleum Processing Section)), 2014, 2: 266.
[16] Montanari T, Finocchio E, Busca G. J. Phys. Chem. C, 2010, 115 (4): 937.
[17] Chiang H, Bhan A. J. Catal., 2010, 271 (2): 251.
[18] Bevilacqua M, Alejandre A G, Resini C, Casagrande M, Ramirez J. Phys. Chem. Chem. Phys., 2002, 4 (18): 4575.
[19] Trombetta M, Busca G. J. Catal., 1999, 187 (2): 521.
[20] Montanari T, Bevilacqua M, Busca G. Appl. Catal. A, 2006, 307 (1): 21.
[21] Radovic L R, Rodriguez-Reinoso F. Chem. Phys. Carbon, 1997, 243.
[22] Liang C, Li Z, Dai S. Angew. Chem. Int. Ed., 2008, 47 (20): 3696.
[23] Pan X, Bao X. Acc. Chem. Res., 2011, 44 (8): 553.
[24] Chen H, Sholl D S. J. Am. Chem. Soc., 2004, 126 (25): 7778.
[25] Peer M, Qajar A, Rajagopalan R, Foley H C. Carbon, 2014, 66: 459.
[26] Santiso E E, Kostov M K, George A M, Nardelli M B, Gubbins K E. Appl. Surf. Sci., 2007, 253 (13): 5570.
[27] Holbrook B P M, Rajagopalan R, Dronvajjala K, Choudhary YK, Foley H C. J. Mol. Catal. A: Chem., 2013, 367: 61.
[28] Guil J M, Guil-López R, Perdigón-Melón J A, Corma A. Micropor. Mesopor. Mater., 1998, 22 (1): 269.
[29] Zheng A, Zhang H, Lu X, Liu S B, Deng F. J. Phys. Chem. B, 2008, 112 (15): 4496.
[30] Huang S J, Zhao Q, Chen W H, Han X, Bao X, Lo P S, Lee H K, Liu S B. Catal. Today, 2004, 97 (1): 25.
[31] Zhao Q, Chen W H, Huang S J, Liu S B. Stud. Surf. Sci. Catal., 2003, 145: 205.
[32] Zheng A, Han B, Li B, Liu S B, Deng F. Chem. Commun., 2012, 48 (55): 6936.
[33] Kondratyuk P, Yates J T. Acc. Chem. Res., 2007, 40 (10): 995.
[34] Guan J, Pan X, Liu X, Bao X. J. Phys. Chem. C, 2009, 113 (52): 21687.
[35] Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji A R O, Kittrell C, Hauge R H, Tour J M. Nat. Commun., 2012, 3: 1225.
[36] Dimitrakakis G K, Tylianakis E, Froudakis G E. Nano Lett., 2008, 8 (10): 3166.
[37] Martinez De La Hoz J M, Balbuena P B. ACS Catal., 2015, 5 (1): 215.
[38] Gomez D A, Combariza A F, Sastre G. Phys. Chem. Chem. Phys., 2012, 14 (7): 2508.
[39] Bae Y S, Hauser B G, Colón Y J, Hupp J T, Farha O K, Snurr R Q. Micropor. Mesopor. Mater., 2013, 169: 176.
[40] Jen H W. Catal. Today, 1998, 42 (1): 37.
[41] Shimura K, Miyazawa T, Hanaoka T, Hirata S. J. Mol. Catal. A: Chem., 2014, 394: 22.
[42] Xiong H, Zhang Y, Wang S, Li J. Catal. Commun., 2005, 6 (8): 512.
[43] Borg Ø, Eri S, Blekkan E A, Storsæter S, Wigum H, Rytter E, Holmen A. J. Catal., 2007, 248 (1): 89.
[44] Khodakov A Y, Bechara R, Griboval-Constant A. Appl. Catal. A, 2003, 254 (2): 273.
[45] Song D, Li J. J. Mol. Catal. A: Chem., 2006, 247 (1): 206.
[46] Santiso E E, George A M, Turner C H, Kostov M K, Gubbins K E, Buongiorno-Nardelli M, Sliwinska-Bartkowiak M. Appl. Surf. Sci., 2005, 252 (3): 766.
[47] Toulhoat H, Lontsi Fomena M, de Bruin T. J. Am. Chem. Soc., 2011, 133 (8): 2481.
[48] Gounder R, Iglesia E. Acc. Chem. Res., 2011, 45 (2): 229.
[49] Gounder R, Iglesia E. J. Am. Chem. Soc., 2009, 131 (5): 1958.
[50] Gounder R, Iglesia E. Angew. Chem. Int. Ed., 2010, 49 (4): 808.
[51] Turner C H, Johnson J K, Gubbins K E. J. Chem. Phys., 2001, 114 (4): 1851.
[52] Byl O, Kondratyuk P, Yates J. J. Phys. Chem. B, 2003, 107 (18): 4277.
[53] Johnson J K, Panagiotopoulos A Z, Gubbins K E. Mol. Phys., 1994, 81 (3): 717.
[54] Turner C H, Brennan J K, Pikunic J, Gubbins K E. Appl. Surf. Sci., 2002, 196 (1): 366.
[55] Turner C H, Brennan J K, Johnson J K, Gubbins K E. J. Chem. Phys., 2002, 116 (5): 2138.
[56] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerck U. Appl. Catal. B, 2012, 113: 19.
[57] Xu L, Song H, Chou L. Appl. Catal. B, 2011, 108: 177.
[58] Chen Z, Guan Z, Li M, Yang Q, Li C. Angew. Chem. Int. Ed., 2011, 50 (21): 4913.
[59] Yang H, Zhang L, Zhong L, Yang Q, Li C. Angew. Chem. Int. Ed., 2007, 46 (36): 6861.
[60] Yang H, Li J, Yang J, Liu Z, Yang Q, Li C. Chem. Commun., 2007, 10: 1086.
[61] Yang H, Zhang L, Su W, Yang Q, Li C. J. Catal., 2007, 248 (2): 204.
[62] Bai S, Li B, Peng J, Zhang X, Yang Q, Li C. Chem. Sci., 2012, 3 (9): 2864.
[63] Liu X, Wang P, Zhang L, Yang J, Li C, Yang Q. Chem. Eur. J., 2010, 16 (42): 12727.
[64] Liu X, Li X, Yan Z. Appl. Catal. B: Environ., 2012, 121: 50.
[65] Weingarten R, Tompsett G A, Conner W C, Huber G W. J. Catal., 2011, 279 (1): 174.
[66] Trens P, Tanchoux N, Papineschi P M, Maldonado D, di Renzo F, Fajula F. Micropor. Mesopor. Mater., 2005, 86 (1): 354.
[67] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359 (6397): 710.
[68] Tanchoux N, Pariente S, Trens P, Fajula F. J. Mol. Catal. A: Chem., 2009, 305 (1): 8.
[69] Rao Y, Kang J, Antonelli D. J. Am. Chem. Soc., 2008, 130 (2): 394.
[70] Phung T K, Hernández L P, Lagazzo A, Busca G. Appl. Catal. A: Gen., 2015, 493: 77.
[71] Botas J, Serrano D, García A, de Vicente J, Ramos R. Catal. Today, 2012, 195 (1): 59.
[72] Botas J, Serrano D, García A, Ramos R. Appl. Catal. B: Environ., 2014, 145: 205.
[73] Makarfi Y I, Yakimova M S, Lermontov A S, Erofeev V I, Koval L M, Tretiyakov V F. Chem. Eng. J., 2009, 154 (1): 396.
[74] Li J, Wei Y, Chen J, Xu S, Tian P, Yang X, Li B, Wang J, Liu Z M. ACS Catal., 2014, 5 (2): 661.
[75] Sassi A, Wildman M A, Ahn H J, Prasad P, Nicholas J B, Haw J F. J. Phys. Chem. B, 2002, 106 (9): 2294.
[76] Chu Y, Ji P, Yi X, Li S, Wu P, Zheng A, Deng F. Catal. Sci. Technol., 2015, 5: 3675.
[77] Fernández A, Lezcano-Gonzalez I, Boronat M, Blasco T, Corma A. J. Catal., 2007, 249 (1): 116.
[78] Chu Y, Sun X, Yi X, Ding L, Zheng A, Deng F. Catal. Sci. Technol., 2015, 5: 3507.
[79] Teketel S, Svelle S, Lillerud K P, Olsbye U. ChemCatChem, 2009, 1 (1): 78.
[80] Teketel S, Skistad W, Benard S, Olsbye U, Lillerud K P, Beato P, Svelle S. ACS Catal., 2011, 2 (1): 26.
[81] Lu T, Goldfield E M, Gray S K. J. Phys. Chem. C, 2008, 112 (7): 2654.
[82] Halls M D, Schlegel H B. J. Phys. Chem. B, 2002, 106 (8): 1921.
[83] Santiso E E, Nardelli M B, Gubbins K E. J. Chem. Phys., 2008, 128 (3): 034704.
[84] Chen W, Fan Z, Pan X, Bao X. J. Am. Chem. Soc., 2008, 130 (29): 9414.
[85] Chen W, Pan X, Bao X. J. Am. Chem. Soc., 2007, 129 (23): 7421.
[86] Chen W, Pan X, Willinger M G, Su D S, Bao X. J. Am. Chem. Soc., 2006, 128 (10): 3136.
[87] Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat. Mater., 2007, 6 (7): 507.
[88] Yang H, Song S, Rao R, Wang X, Yu Q, Zhang A. J. Mol. Catal. A: Chem., 2010, 323 (1): 33.
[89] Kondratyuk P, Wang Y, Liu J, Johnson J K, Yates J T. J. Phys. Chem. C, 2007, 111 (12): 4578.
[90] Castillejos E, Debouttière P J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P. Angew. Chem. Int. Ed., 2009, 48 (14): 2529.
[91] 包信和 (Bao X H). 中国科学:化学 (Science China Chemistry), 2012, 42 (4): 355.
[92] GråNä S E, Andersen M, Arman M A, Gerber T, Hammer B, Schnadt J, Andersen J N, Michely T, Knudsen J. J. Phys. Chem. C, 2013, 117 (32): 16438.
[93] Jin L, Fu Q, Dong A, Ning Y, Wang Z, Bluhm H, Bao X. J. Phys. Chem. C, 2014, 118 (23): 12391.
[94] Feng X, Maier S, Salmeron M. J. Am. Chem. Soc., 2012, 134 (12): 5662.
[95] Jin L, Fu Q, Yang Y, Bao X. Surf. Sci., 2013, 617: 81.
[96] Zhang X, Wang L, Xin J, Yakobson B I, Ding F. J. Am. Chem. Soc., 2014, 136 (8): 3040.
[97] Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C. ACS Nano, 2013, 8 (1): 443.
[98] Zhang Y, Fu Q, Cui Y, Mu R, Jin L, Bao X. Phys. Chem. Chem. Phys., 2013, 15 (43): 19042.
[99] Batzill M. Surf. Sci. Rep., 2012, 67 (3): 83.
[100] Wintterlin J, Bocquet M L. Surf. Sci., 2009, 603 (10): 1841.
[101] Yao Y, Fu Q, Zhang Y, Weng X, Li H, Chen M, Jin L, Dong A, Mu R, Jiang P. Proc. Natl. Acad. Sci., 2014, 111 (48): 17023.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[14] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
阅读次数
全文


摘要

催化剂的孔道限域效应