English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 438-449 DOI: 10.7536/PC150940 前一篇   后一篇

• 综述与评论 •

碳材料修饰铋系光催化剂及其应用

张霞, 樊静*   

  1. 河南师范大学环境学院 河南省环境污染控制重点实验室 黄淮水环境与污染防治教育部重点实验室 新乡 453007
  • 收稿日期:2015-09-01 修回日期:2015-11-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 樊静 E-mail:fanjing@htu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21377036)和河南省科技创新杰出人才计划(No. 144200510004)资助

Carbon Materials Modified Bismuth Based Photocatalysts and Their Applications

Zhang Xia, Fan Jing*   

  1. Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
  • Received:2015-09-01 Revised:2015-11-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No. 21377036)and Henan Provincal Science and Technology Innovation Excellent Talent Program(No. 144200510004).
可见光半导体光催化剂具有高效利用太阳能从而解决能源及环境问题的优势,引起光催化及其他领域人们的关注.铋系光催化剂多属于窄带隙半导体材料,能够吸收太阳光谱中的大量可见光.此外,铋系光催化剂独特的层状晶体结构及较深的价带位置决定了其具有较高的催化活性,成为近年来半导体光催化领域研究的热点.碳基质材料由于具有比表面积大、热和化学稳定性高以及导电能力强等物理化学性质而被人们广泛研究.将碳材料与铋系半导体进行复合,两者之间的协同效应能够增强对反应物的吸附量,拓宽对太阳光的吸收范围,加速电子/空穴对的分离,从而提高催化活性.此外,碳材料修饰的铋光催化剂更易被分离及回收利用,可有效降低应用成本,具有潜在的应用前景.本文对近年来利用碳基质材料修饰铋系光催化剂的类型、制备方法、结构与性能、作用机理及其应用研究进行了综述,提出了目前利用碳材料修饰铋系光催化剂在材料设计、机理研究及应用等方面存在的主要问题,并对其未来发展方向进行了展望.
Visible light responsive semiconductor photocatalysts have attracted considerable attention due to their capacity of efficient use of sunlight to solve energy and environmental problems. Most of bismuth based photocatalysts have narrow bandgap and can absorb abundant visible light in natural solar spectrum. Moreover,the unique layered structure and deeper valance band of the bismuth based photocatalysts make them to have excellent photocatalytic activity and become the focus of research in photocatalysis field. Carbonaceous materials have been widely studied because of their unique physicochemical properties such as large surface area, high thermal and chemical stability and outstanding electron conductivity. Combining bismuth-based photocatalysts with carbonaceous materials, the synergistic effects between them endow the composites with increased surface adsorption capacity, extended light absorption thresholds, and enhanced separation of photogenerated electron/hole pairs. All of these are beneficial to the improvement of photocatalytic activities. In addition, it is easier to separate and recover the composite photocatalysts for recycling utilization, thereby reducing the cost in practical application. Therefore, bismuth based photocatalysts modified with diverse carbonaceous materials are expected to have promising application in future. In this article, the researches on the type, preparation methods, structure, performance, mechanism of action, and application of these carbonaceous materials modified bismuth photocatalysts have been reviewed in detail. The main problems in design, mechanism research and application are presented, and the future development directions have been suggested.

Contents
1 Introduction
1.1 Bismuth based photocatalysts
1.2 Construction of bismuth based composite photocatalysts
2 Carbon loading bismuth based photocatalysts
2.1 Activated carbon supporter
2.2 Graphene supporter
2.3 Carbon nanotubes supporter
2.4 Fullerence and other nanocarbon supporter
3 Carbon coating bismuth-based photocatalysts
4 Carbon doping bismuth-based photocatalysts
5 Conclusion and outlook

中图分类号: 

()
[1] Osterloh F E. Chem. Mater., 2008, 20: 35.
[2] 龙明策(Long M C), 蔡俊(Cai J), 蔡伟民(Cai W M), 陈恒(Chen H), 柴歆烨(Chai X Y). 化学进展(Progress in Chemistry), 2006, 18(9): 1065.
[3] Sun S M, Wang W Z, Zhang L, Zhou L, Yin W Z, Shang M. Environ. Sci. Technol., 2009, 43(6): 2005.
[4] Yu C L, Cao F F, Li G, Wei R F, Yu G C, Jin R C, Fan Q Z, Wang C Y. Sep. Purif. Technol., 2013, 120: 110.
[5] Wang W Z, Serp P, Kalck P, Luís Faria J. J. Mol. Catal. A: Chemical, 2005, 235: 194.
[6] Saison T, Chemin N, Chanéac C, Durupthy O, Ruaux V, Mariey Maugé F, Beaunier P, Jolivet J P. J. Phys. Chem. C, 2011, 115(13): 5657.
[7] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[8] Kusainova A M, Zhou W Z, Irvine J T S, Lightfoot P. J. Solid State Chem., 2002, 166: 148.
[9] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Appl. Catal. B, 2006, 68: 125.
[10] Li J, Yu Y, Zhang L Z. Nanoscale, 2014, 6: 8473.
[11] Cheng H F, Huang B B, Dai Y. Nanoscale, 2014, 6: 2009.
[12] Wang W J, Huang B B, Ma X C, Wang Z Y, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Chem. Eur. J., 2013, 19: 14777.
[13] Zhang R, Dai Y, Lou Z Z, Li Z J, Wang Z Y, Yang Y M, Qin X Y, Zhang X Y, Huang B B. Cryst. Eng. Comm., 2014, 16: 4631.
[14] Zhang L S, Wang W Z, Yang J O, Chen Z G, Zhang W Q, Zhou L, Liu S W. Appl. Catal. A: Gen., 2006, 308: 105.
[15] Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P. Mater. Lett., 2011, 65(9): 1344.
[16] Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. J. Phys. Chem. C, 2010, 114(14): 6472.
[17] Rullens F, Laschewsky A, Devillers M. Chem. Mater., 2006, 18(3): 771.
[18] Zhang S C, Zhang C, Man Y, Zhu Y F. J. Solid State Chem., 2006, 179(1): 62.
[19] Zhang Z J, Wang W Z, Shang M, Yin W Z. J. Hazard. Mater., 2010, 177: 1013.
[20] Zhao X, Liu H J, Shen Y L, Qu J H. App. Catal. B: Environ., 2011, 106(1/2): 63.
[21] Guo C S, Xu J, Wang S F, Zhang Y, He Y, Li X C. Catal. Sci. Technol., 2013, 3: 1603.
[22] Pan C S, Zhu Y F. Environ. Sci. Technol., 2010, 44(14): 5570.
[23] Zhang S M, Zhang G K, Yu S J, Chen X G, Zhang X Y. J. Phys. Chem. C, 2009, 113(46): 20029.
[24] Bhat S S M, Sundaram N G. RSC Adv., 2013, 3: 14371.
[25] Lin X P, Huang T, Huang F Q, Wang W D, Shi J L. J. Mater. Chem., 2007, 17: 2145.
[26] Shenawi-Khalil S, Uvarov V, Kritsman Y, Menes E, Popov I, Sasson Y. Catal. Commun., 2011, 12: 1136.
[27] Jin X L, Ye L Q, Wang H, Su Y R, Xie H Q, Zhong Z G, Zhang H. Appl. Catal. B: Environ., 2015, 165: 668.
[28] Wang G Z, Sun Q L, Liu Y Y, Huang B B, Dai Y, Zhang X Y, Qin X Y. Chem. Eur. J., 2015, 21: 2364.
[29] Fan J, Hu X Y, Xie Z G, Zhang K L, Wang J J. Chem. Eng. J., 2012, 179: 44.
[30] Zhang K L, Xie Z G, Fan J, Hu X H, Wang J J. J. Environ. Eng., 2012, 138(3): 259.
[31] Hu X Y, Fan J, Zhang K L, Wang J J. Chemosphere, 2012, 87(10): 1155.
[32] Hu X X, Fan J, Zhang K L, Yu N, Wang J J. Ind. Eng. Chem. Res, 2014, 53: 14623.
[33] Saison T, Gras P, Chemin N, Chaneac C, Durupthy O, Brezova V, Colbeau-Justin C, Jolivet J P. J. Phys. Chem. C, 2013, 117: 22656.
[34] Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. J. Mater. Chem., 2011, 21: 887.
[35] 段芳(Duan F), 张琴(Zhang Q),魏取福(Wei Q F),施冬健(Shi D J), 陈明清(Chen M Q). 化学进展(Progress in Chemistry), 2014, 26(1): 30.
[36] Adams L K, Lyon D Y, Alvarez P J J. Water Res., 2006, 40(19): 3527.
[37] Li Y Y, Wang J S, Yao H C, Dang L Y, Li Z J. Catal. Commu., 2011, 12: 660.
[38] Cao J, Xu B, Lin H, Chen S. Chem. Eng. J., 2013, 228: 482.
[39] Elahifard M R, Rahimnejad S, Haghighi S, Gholami M R. J.Am. Chem. Soc., 2007, 129: 9552.
[40] Liu Y Y, Wang Z Y, Huang B B, Zhang X Y, Qin X Y, Dai Y. J.Colloid Interf. Sci., 2010, 348(1): 211.
[41] Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. J. Phys. Chem. C, 2012, 116 (20): 11004.
[42] Wang P, Huang B B, Dai Y, Whangbo M H. Phys. Chem. Chem. Phys., 2012, 14: 9813.
[43] Pan C S, Zhu Y F. Catal. Sci. Technol., 2015, 5: 3071.
[44] Li Y Q, Wang Z Y, Huang B B, Dai Y, Zhang X Y, Qin X Y. Appl. Surf. Sci., 2015, 347: 258.
[45] Murcia-Lopez S, Navio J A, Hidalgo M C. Appl. Catal. A: Gen., 2013, 466: 51.
[46] Jiang Z Y, Huang B B, Lou Z Z, Wang Z Y, Meng X D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y. Dalton Trans., 2014, 43: 8170.
[47] Moniz S J A, Shevlin S A, Martin D J, Guo Z X, Tang J W. Energy Environ. Sci., 2015, 8: 731.
[48] Germain V, Brioude A, Ingert D, Pileni M P. J. Chem. Phys., 2005, 122: 124707.
[49] Zhang H, Zong R L, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2008, 42(10): 3803.
[50] Liu Y F, Yao W Q, Liu D, Zong R L, Zhang M, Ma X G, Zhu Y F. Appl. Catal. B: Environ., 2015, 163: 547.
[51] Shenawi-Khalil S, Uvarov V, Menesa E, Popov I, Sasson Y. Appl. Catal. A: General., 2012, 413/414: 1.
[52] Liu H, Su Y, Chen Z, Jin Z T, Wang Y. J. Hazard. Mater., 2014, 266: 75.
[53] Sun H Q,Liu S Z,Liu X M, Wang S B. Appl. Catal. B: Environ., 2014, 146: 162.
[54] Ng Y H, Iwase A, Kudo A, Amal R. J. Phys. Chem. Lett., 2010, 1(17): 2607.
[55] Sun Y F, Qu B Y, Liu Q, Gao S, Yan Z X, Yan W S, Pan B C, Wei S Q, Xie Y. Nanoscale, 2012, 4: 3761.
[56] Morawski A W, Janus M, Tryba B, Toyoda M, Tsumura T, Inagaki M. Pol. J. Chem. Technol., 2009, 11(2): 46.
[57] Liu S X, Chen X Y. Chem. Technol. Biotechnol., 2007, 82: 453.
[58] Zhang X, Zhou M, Lei L. Carbon, 2005, 43(8): 1700.
[59] Leary R, Westwood A. Carbon, 2011, 49(3): 741.
[60] Zhao W, Bai Z, Ren A, Guo B, Wu C. Appl. Surf. Sci., 2010, 256: 3493.
[61] Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, Linares-Solano A. Carbon, 2014, 67: 104.
[62] Chen S H, Yin Z, Luo S L, Li X J, Yang L H, Deng F. Appl. Surf. Sci., 2012, 259: 7.
[63] Li J L, Chen B B, Zhang W, Wang L J.J. Inorg. Mater., 2014, 29(3): 225.
[64] Tian G H, Chen Y J, Zhou J, Tian C G, Li R, Wang C J, Fu H G. Cryst. Eng. Comm., 2014, 16: 842.
[65] Zhang J, Huang Z H, Xu Y, Kang F Y. J. Am. Ceram. Soc., 2013, 96(5): 1562.
[66] Paricha R, Gupta S, Srivastava A K. Small, 2009, 5: 2253.
[67] Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113: 7990.
[68] Zhang J T, Xiong Z G, Zhao X S. J. Mater. Chem., 2011, 21(11): 3634.
[69] Gao E, Wang W Z, Shang M, Xu J H. Phys. Chem. Chem. Phys., 2011, 13: 2887.
[70] Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23: 1089.
[71] An X Q, Yu J C. RSC Advance, 2011, 1: 1426.
[72] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2(7): 1487.
[73] Yan Y, Sun S F, Song Y, Yan X, Guan W, Liu X, Shi W. J. Hazard. Mater., 2013, 250: 106.
[74] Fu Y S, Sun X Q, Wang X. Mater. Chem. Phys., 2011, 131: 325.
[75] Ma H W, Shen J F, Shi M, Lu X, Li Z Q, Long Y, Li N, Ye M X. Appl. Catal. B: Environ., 2012, 121: 198.
[76] Xu J J, Ao Y H, Chen M D. Mater. Lett., 2013, 92: 126.
[77] Min Y L, Zhang K, Chen Y C, Zhang Y G. Sep. Purif. Technol., 2012, 86: 98.
[78] Liu X J, Pan L K, Lv T, Sun Z, Sun C Q. J. Colloid Interf. Sci., 2013, 408: 145.
[79] Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S. Phys. Chem. Chem. Phys., 2012, 14: 10572.
[80] Ai Z H, Ho W K, Lee S C. J. Phys. Chem. C, 2011, 115: 25330.
[81] Tu X M, Luo S L, Chen G X, Li J H. Chem. Eur. J., 2012, 18: 14359.
[82] Song S Y, Wei G, Wang X, Li X Y, Liu D P, Xing Y, Zhang H J. Dalton Trans., 2012, 41: 10472.
[83] Di Paola A, García-López E, Marcì G, Palmisano L. J. Hazard. Mater., 2012, 211: 3.
[84] Maiti U N, Lee W J, Lee J M, Oh Y, Kim J Y, Kim J E, Shim J, Han T H, Kim S O. Adv. Mater., 2014, 26(1): 40.
[85] Luo Y S, Liu J P, Xia X H, Li X Q, Fang T, Li S Q, Ren Q F, Li J L, Jia Z. Mater. Lett., 2007, 61 (11/12): 2467.
[86] Woan K, Pyrgiotakis G, Sigmund W. Adv. Mater., 2009, 21(21): 2233.
[87] Wang W D, Serp P, Kalck P, Faria J L. J. Mol. Catal. A: Chem., 2005, 235(1/2): 194.
[88] Su M H, He C, Zhu L F, Sun Z J, Shan C, Zhang Q, Shu D, Qiu R L, Xiong Y. J. Hazard. Mater., 2012, 229/230: 72.
[89] Zhang Y, Yu J Q, Wang H W, Sun M M, Bu Y Y, Yu D S, Li W B. J. Nanotechnol., 2011, 2011: 702.
[90] Zhou X C, Yu J Q, Zhang Y, Yu D S, Lu W. Rare Metals, 2011, 30: 199.
[91] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2007, 41(17): 6234.
[92] Zhao X, Liu H J, Shen Y L, Qu J H. Appl. Catal. B: Environ., 2011, 106: 63.
[93] Li G S, Jiang B, Li X, Lian Z C, Xiao S N, Zhu J, Zhang D Q, Li H X. ACS Appl. Mater. Inter., 2013, 5(15): 7190.
[94] 程立强(Cheng L Q), 刘应亮(Liu Y L), 张静娴(Zhang J X), 袁定胜(Yuan D S), 徐常威(Xu C W), 孙广辉(Sun G H). 化学进展(Progress in Chemistry), 2006, 18(10): 1298.
[95] Chen Y L, Cao X X, Kuang J D, Chen Z, Chen J L, Lin B Z. Catal. Commun., 2010, 12(4): 247.
[96] Zhao W R, Wang Y, Yang Y, Tang J, Yang Y Y. Appl. Catal. B: Environ., 2012, 115: 90.
[97] Zhang M Y, Shao C L, Mu J B, Huang X M, Zhang Z Y, Guo Z C, Zhang P, Liu Y C. J. Mater. Chem., 2012, 22(2): 577.
[98] Zhang L, Wang W Z, Shang M, Sun S M, Xu J H. J. Hazard. Mater., 2009, 172(2/3): 1193.
[99] 张俊喜(Zhang J X), 曹小卫(Cao X W), 李雪(Li X), 徐娜(Xu N), 颜立成(Yan L C).上海电力学院学报(Journal of Shanghai University of Electric Power), 2008, 24(2): 172.
[100] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans., 2010, 39: 3420.
[101] Zhang M Y, Shao C L, Li X H, Zhang P, Sun Y Y, Su C Y, Zhang X, Ren J J, Liu Y C. Nanoscale, 2012, 4(23): 7501.
[102] Gawande S B, Thakare S R. Int. Nano. Lett., 2012, 2: 11.
[103] Di Valentin C, Pacchioni G, Selloni A. Chem. Mater., 2005, 17: 6656.
[104] Cui Y M, Li H Q, Hong W S, Fan S H, Zhu L J. Powder Technol., 2013, 247: 151.
[105] Duan F, Zheng Y, Chen M Q. Mater. Lett., 2011, 65(2): 191.
[106] Lee D K, Cho I S, Lee S W, Bae S T, Noh J H, Kim D W, Hong K S. Mater. Chem. Phys., 2010, 119(1/2): 106.
[107] Lu B, Ma X G, Pan C S, Zhu Y F. Appl. Catal. A: Gen., 2012, 435/436: 93.
[108] Yu J H, Wei B, Zhu L, Gao H, Sun W J, Xu L L. Appl. Surf. Sci., 2013, 284: 497.
[109] Dai G P, Liu S Q, Liang Y. J. Alloy Compd., 2014, 608: 44.
[110] Tang D, Zhang H C, Huang H, Liu R H, Han Y Z, Liu Y, Tong C Y, Kang Z H. Dalton Trans., 2013, 42: 6285.
[111] Yin C, Zhu S M, Chen Z X, Zhang W, Gu J J, Zhang D. J. Mater. Chem. A, 2013, 1(29): 8367.
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[12] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[13] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[14] 任志华, 杨晓溪, 孙振东, 任婧, 桑楠, 周群芳, 江桂斌. 环境内分泌干扰物对雌激素受体表达与转录激活的调控效应及分析技术[J]. 化学进展, 2022, 34(10): 2121-2133.
[15] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.