English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 471-481 DOI: 10.7536/PC150937 前一篇   后一篇

• 综述与评论 •

含铱配合物聚合物磷光材料及其电致发光性能

梁爱辉*, 黄贵, 王志平, 陈水亮*, 侯豪情   

  1. 江西师范大学化学化工学院 南昌 330022
  • 收稿日期:2015-09-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 梁爱辉, 陈水亮 E-mail:lah14god@163.com;shuiliangchen@163.com
  • 基金资助:
    国家自然科学基金项目(No. 51403088)和江西省教育厅科学技术研究项目(No.GJJ150322,GJJ150330)资助

Polymer Phosphorescent Materials with Iridium Complexes and Their Electroluminescent Properties

Liang Aihui*, Huang Gui, Wang Zhiping, Chen Shuiliang*, Hou Haoqing   

  1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
  • Received:2015-09-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51403088)and the Foundation of Jiangxi Educational Committee(No.GJJ150322,GJJ150330).
聚合物电致发光器件由于在大面积平板显示和固态照明上的潜在应用,在学术研究和工业应用领域引起了广泛的关注.聚合物电致发光器件可以通过溶液加工的方法制备,制作工艺简单,成本低、材料省,并且可以实现大面积柔性显示.和荧光聚合物材料相比,磷光铱配合物聚合物材料可以同时利用单线态和三线态激子发光,器件的内量子效率理论上能达到100%,突破了传统25%的极限,因而受到广泛关注.基于此,本文综述了含铱配合物聚合物磷光材料的研究进展,主要对含铱配合物线型聚合物和超分子聚合物的合成、结构特点以及光电特性进行了总结,并讨论了聚合物结构对材料性能的影响.
Polymer light-emitting diodes (PLEDs) have drawn tremendous research interest in both academia and industry due to their potential applications in large-area flat panel display and solid-state lighting. With excellent properties of low-cost, lightweight, flexible and large-scale manufacture by using solution processing approaches, such as spin-coating, ink-jet printing and roll-to-roll, PLEDs have gotten more and more attention. Compared with fluorescent PLEDs, which use only singlet excitons for light emission, phosphorescent PLEDs can utilize both singlet and triplet excitons for light emission, which increases the quantum efficiency of PLEDs. Theoretically, the quantum efficiency of phosphorescent PLEDs can be higher than that of fluorescent PLEDs by four times and an external quantum efficiency over 20% can be obtained. Iridium complex-containing phosphorescent materials have been successfully developed and applied in high performance solution-processed PLEDs. Among them, the iridium complexes are covalently bonded into the polymer main chain or onto side chain, which can effectively avoid the phase separation and dopant aggregation. Thus, efficient electrophosphorescent devices based on these materials with reduced efficiency loss could be expected. More recently, solution-processed supramolecular polymers with iridium complexes were also successfully demonstrated and show promising application potential for high performance solution processed PLEDs. Therefore, we review the recent progress of iridium complex-based electrophosphorescent polymers materials in this paper. The synthesis, structural characterization and optoelectronic properties of iridium-based electrophosphorescent materials, including the liner polymers and supramolecular polymers are mainly summarized, and the influence of polymer structure on the material properties is also discussed.

Contents
1 Introduction
2 Electrophosphorescent polymers
2.1 Red electrophosphorescent polymers
2.2 Green electrophosphorescent polymers
2.3 Blue electrophosphorescent polymers
2.4 White electrophosphorescent polymers
3 Electrophosphorescent supramolecular polymers
4 Conclusion

中图分类号: 

()
[1] Wong W Y, Ho C L. Coord. Chem. Rev., 2009, 253: 1709.
[2] Shi J, Jim C J W, Mahtab F, Liu J, Lam J W Y, Sung H H Y, Williams I D, Dong Y, Tang B Z. Macromolecules, 2010, 43: 680.
[3] Hong Y, Chen S, Leung C W T, Lam J W Y, Liu J, Tseng N W, Kwok R T K, Yu Y, Wang Z, Tang B Z. ACS Appl. Mater. Interfaces, 2011, 3: 3411.
[4] Keefe M H, Benkstein K D, Hupp J T. Coord. Chem. Rev., 2000, 205: 201.
[5] Kang J H, Kim H J, Kwon T H, Hong J I. J. Org. Chem., 2014, 79: 6000.
[6] Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X. Chem. Soc. Rev., 2014, 43: 3259.
[7] Zhou G, Wong W Y, Suo S. J. Photochem. Photobiol., C, 2010, 11: 133.
[8] Liu M, Su S J, Jung M C, Qi Y, Zhao W M, Kido J. Chem. Mater., 2012, 24(20): 3817.
[9] Wu H, Zhou G, Zou J, Ho C L, Wong W Y, Yang W, Peng J, Cao Y. Adv. Mater., 2009, 21: 4181.
[10] Ma Y G, Zhang H Y, Shen J C, Che C M. Synth. Met., 1998, 94: 245.
[11] Kawamura Y, Goushi K, Brooks J, Brown J J, Sasabe H, Adachi C. Appl. Phys. Lett., 2005, 86: 071104.
[12] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151.
[13] Ulbricht C, Beyer B, Friebe C, Winter A, Schubert U S. Adv. Mater., 2009, 21: 4418.
[14] Wong W Y, Ho C L. J. Mater. Chem., 2009, 19: 4457.
[15] Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J. Nature, 1992, 357: 477.
[16] Wu H, Ying L, Yang W, Cao Y. Chem. Soc. Rev., 2009, 38: 3391.
[17] Farinola G M, Ragni R. Chem. Soc. Rev., 2011, 40: 3467.
[18] Zhong C, Duan C, Huang F, Wu H, Cao Y. Chem. Mater., 2010, 23: 326.
[19] Ying L, Ho C L, Wu H, Cao Y, Wong W Y. Adv. Mater., 2014, 26: 2459.
[20] Shao S, Ding J, Ye T, Xie Z, Wang L, Jing X, Wang F. Adv. Mater., 2011, 23: 3570.
[21] Ye S, Liu Y, Lu K, Wu W, Du C, Liu Y, Liu H, Wu T, Yu G. Adv. Funct. Mater., 2010, 20: 3125.
[22] Ho C L, Wong W Y, Zhou G J, Yao B, Xie Z, Wang L. Adv. Funct. Mater., 2007, 17: 2925.
[23] Zhen H, Luo J, Yang W, Chen Q, Ying L, Zou J, Wu H, Cao Y. J. Mater. Chem., 2007, 17: 2824.
[24] Ying L, Xu Y, Yang W, Wang L, Wu H, Cao Y. Org. Electron., 2009, 10: 42.
[25] Zhang J, Zhang K, Huang X L, Cai W Z, Zhou C, Liu S J, Huang F, Cao Y. J. Mater. Chem., 2012, 22: 12759.
[26] Liang A H, Zhang K, Zhang J, Huang F, Zhu X H, Cao Y. Chem. Mater., 2013, 25: 1013.
[27] Liang A H, Dong S, Zhang K, Xiao X, Huang F, Zhu X H, Cao Y. Macromol. Rapid Commun., 2013, 34: 1301.
[28] Zhang J, Dong S, Zhang K, Liang A, Yang X, Huang F, Cao Y. Chem. Commun., 2014, 50: 8227.
[29] Lowry M S, Bernhard S. Chem. Eur. J., 2006, 12: 7970.
[30] Baranoff E, Suàrez S, Bugnon P, Barolo C, Buscaino R, Scopelliti R, Zuppiroli L, Graetzel M, Nazeeruddin M K. Inorg. Chem., 2008, 47: 6575.
[31] Chen X W, Liao J L, Liang Y M, Ahmed M O, Tseng H E, Chen S A. J. Am. Chem. Soc., 2003, 125: 636.
[32] Jiang J X, Jiang C Y, Yang W, Zhen H G, Huang F, Cao Y. Macromolecules, 2005, 38: 4072.
[33] Ying L, Zou J, Zhang A, Chen B, Yang W, Cao Y. J. Organomet. Chem., 2009, 694: 2727.
[34] Wu F I, Reddy D S, Shu C F, Liu M S, Jen A K Y. Chem. Mater., 2003, 15: 269.
[35] Palmer T F, Parmar S S. Journal of Photochemistry, 1985, 31: 273.
[36] Jiang Z, Chen Y, Yang C, Cao Y, Tao Y, Qin J, Ma D. Org. Lett., 2009, 11: 1503.
[37] Yang X H, Wu F I, Neher D, Chien C H, Shu C F. Chem. Mater., 2008, 20: 1629.
[38] Ma Z, Ding J, Zhang B, Mei C, Cheng Y, Xie Z, Wang L, Jing X, Wang F. Adv. Funct. Mater., 2010, 20: 138.
[39] Haldi A, Kimyonok A, Domercq B, Hayden L E, Jones S C, Marder S R, Weck M, Kippelen B. Adv. Funct. Mater., 2008, 18: 3056.
[40] Zhen H Y, Luo C, Yang W, Song W Y, Du B, Jiang J X, Jiang C Y, Zhang Y, Cao Y. Macromolecules, 2006, 39: 1693.
[41] Zhang K, Chen Z, Yang C, Gong S, Qin J, Cao Y. Macromol. Rapid Commun., 2006, 27: 1926.
[42] Zhang K, Chen Z, Zou Y, Yang C, Qin J, Cao Y. Organometallics, 2007, 26: 3699.
[43] Ma Z, Chen L, Ding J, Wang L, Jing X, Wang F. Adv. Mater., 2011, 23: 3726.
[44] Lee C L, Kang N G, Cho Y S, Lee J S, Kim J J. Opt. Mater., 2003, 21: 119.
[45] Wang X D, Ogino K, Tanaka K, Usui H. IEEE J. Sel. Top. Quantum Electron., 2004, 10: 121.
[46] Wang W, Zhu T, Chen G, Li C, Di H, Ren C, Ding Y. Synth. Met., 2008, 158: 1022.
[47] Wang X Y, Prabhu R N, Schmehl R H, Weck M. Macromolecules, 2006, 39: 3140.
[48] Suzuki M, Tokito S, Sato F, Igarashi T, Kondo K, Koyama T, Yamaguchi T. Appl. Phys. Lett., 2005, 86: 103507.
[49] Sandee A J, Williams C K, Evans N R, Davies J E, Boothby C E, Kohler A, Friend R H, Holmes A B. J. Am. Chem. Soc., 2004, 126: 7041.
[50] Sudhakar M, Djurovich P I, Hogen E T E, Thompson M E. J. Am. Chem. Soc., 2003, 125: 7796.
[51] Tokito S, Suzuki M, Sato F, Kamachi M, Shirane K. Org. Electron., 2003, 4: 105.
[52] Tokito S, Suzuki M, Sato F. Thin Solid Films, 2003, 445: 353.
[53] You Y, Kim S H, Jung H K, Park S Y. Macromolecules, 2006, 39: 349.
[54] Park J H, Koh T W, Chung J, Park S H, Eo M, Do Y, Yoo S, Lee M H. Macromolecules, 2013, 46: 674.
[55] Shao S, Ding J, Wang L, Jing X, Wang F. J. Am. Chem. Soc., 2012, 134: 15189.
[56] Jiang J, Xu Y, Yang W, Guan R, Liu Z, Zhen H, Cao Y. Adv. Mater., 2006, 18: 1769.
[57] Mei C, Ding J, Yao B, Cheng Y, Xie Z, Geng Y, Wang L. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 1746.
[58] Wu F I, Yang X H, Neher D, Dodda R, Tseng Y H, Shu C F. Adv. Funct. Mater., 2007, 17: 1085.
[59] Poulsen D A, Kim B J, Ma B, Zonte C S, Fréchet J M J. Adv. Mater., 2010, 22: 77.
[60] Shao S, Ding J, Wang L, Jing X, Wang F. J. Am. Chem. Soc., 2012, 134: 20290.
[61] Zhen H, Xu W, King W, Chen Q, Xu Y, Jiang J, Peng J, Cao Y. Macromol. Rapid Commun., 2006, 27: 2095.
[62] Chen Q, Liu N, Ying L, Yang W, Wu H, Xu W, Cao Y. Polymer, 2009, 50: 1430.
[63] Zhang K, Chen Z, Yang C, Tao Y, Zou Y, Qin J, Cao Y. J. Mater. Chem., 2008, 18: 291.
[64] Cho W, Karthikeyan N S, Kim S, Kim S, Gal Y S, Lee J W, Jin S H. Synth. Met., 2013, 175: 68.
[65] Park M J, Kwak J, Lee J, Jung I H, Kong H, Lee C, Hwang D H, Shim H K. Macromolecules, 2010, 43: 1379.
[66] Liang A, Dong S, Zhu X, Huang F, Cao Y. Polym. Chem., 2015, 6: 6202.
[1] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[2] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[3] 黄文忠, 占田广, 林沨, 赵新. 基于主-客体作用的超分子聚合物的构筑和调控进展[J]. 化学进展, 2016, 28(2/3): 165-183.
[4] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
[5] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[6] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[7] 周丽霞, 刘淑娟, 赵强, 凌启淡, 黄维. 基于离子型铱配合物的发光电化学池[J]. 化学进展, 2011, 23(9): 1871-1882.
[8] 廖章金, 朱彤珺, 密保秀, 高志强, 范曲立, 黄维. 小分子铱配合物及其电致发光[J]. 化学进展, 2011, 23(8): 1627-1643.
[9] 陶然, 乔娟, 段炼, 邱勇. 蓝色磷光有机发光材料[J]. 化学进展, 2010, 22(12): 2255-2267.
[10] 王宇,唐黎明. 氢键识别超分子聚合物的新进展*[J]. 化学进展, 2007, 19(05): 769-778.
[11] 张秀菊,许运华,史华红. 以铱为内核的有机电致磷光材料*[J]. 化学进展, 2006, 18(0708): 870-882.
[12] 王传明 范曲立 霍岩丽 黄维 . 有机电致磷光材料的分子设计:从主体材料到客体材料[J]. 化学进展, 2006, 18(05): 519-525.
[13] 赵强 李富友 黄春辉 . 基于磷光发射的有机电致白光器件的研究进展[J]. 化学进展, 2006, 18(05): 526-532.
[14] 王毓江,唐黎明. 基于氢键作用结合的超分子聚合物[J]. 化学进展, 2006, 18(0203): 308-315.
[15] 甄红宇,杨伟,朱卫国,曹镛. 利用三线态激子提高有机/高分子发光器件的量子效率*[J]. 化学进展, 2004, 16(01): 99-.