English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 193-203 DOI: 10.7536/PC150935 前一篇   后一篇

• 综述与评论 •

磷基复合负极在二次电池中的研究进展

李骄阳, 王莉*, 何向明*   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2015-09-01 修回日期:2015-11-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 王莉, 何向明 E-mail:Wang-l@tsinghua.edu.cn;hexm@tsinghua.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973计划)(No.2013CB934000)和北京高等学校"青年英才计划"(YETP0157)资助

Phosphorus-Based Composite Anode Materials for Secondary Batteries

Li Jiaoyang, Wang Li*, He Xiangming*   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2015-09-01 Revised:2015-11-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Key Basic Research Program of China (973) (No. 2013CB934000)and Beijing High School Young Talents Plan (YETP0157).
电池作为电能与化学能的高效转化装置,在能源存储及应用方面具有重要作用。锂/钠离子等二次电池作为绿色高能电池,是便携式电子设备、电动汽车及新能源储能的理想电源。研究新型电极材料是研制新一代高性能电池的基础。磷资源丰富,理论比容量高,可用于电池负极材料。目前对磷材料的认知还存在很多不足,阻碍了磷材料的发展和应用,尤其是在储能方面。本文综述了磷各种同素异形体的性质,介绍了近几年磷作为电极材料在储能领域的研究进展,包括复合材料的制备、材料结构对电化学性能的影响等,重点介绍了载体材料结构对磷电化学性能的调控作用,并展望了储能磷材料的未来发展方向。
Secondary batteries play important roles in energy storage. Secondary batteries such as lithium/sodium-ion batteries are promising for portable electronic devices, electric vehicles and green energy storage. The research on novel electrode materials is important for rechargeable battery of next generation. Phosphorus is attractive as anode materials due to its high theoretical specific capacity and abundant resources. However, there are many unknown aspects of phosphorus materials, which hinders its development and application, especially in the field of energy storage. This paper focuses on the properties of all the allotropes of phosphorus, and briefly introduces the research advances of phosphorus anode in recent years, including preparation, the effects of matrix structure on electrochemical performances and on the mechanisms. Meanwhile, the paper prospects the development trend of phosphorus based composites, aiming at further application in secondary batteries.

Contents
1 Introduction
2 The properties of all the allotropes of phosphorus
3 The research advances of phosphorus anode materials
4 The effect of matrix structure
4.1 Porous carbon
4.2 Nanotube
4.3 Graphene
5 Conclusion

中图分类号: 

()
[1] Scrosati B. Nature, 1995, 373(6515):557.
[2] 谢健(Xie J),赵新兵(Zhao X B),余红明(Yu H M),齐好(Qi H), 曹高劭(Cao G S),涂江平(Tu J P). 物理化学学报(Acta Phys. Chim. Sin.), 2006, 22(11):1409.
[3] Wachtler M, Winter M, Besenhard J O. Journal of Power Sources, 2002, 105(2):151.
[4] Park C M, Kim J H, Kim H, Sohn H J. Chemical Society Reviews, 2010, 39(8):3115.
[5] Derrien G, Hassoun J, Panero S, Scrosati B. Advanced Materials, 2007, 19:2336.
[6] Wang L, He X, Li J, Sun W, Gao J, Guo J, Jiang C. Angewandte Chemie International Edition, 2012, 51(36):9034.
[7] 徐环(Xu H), 陈龙(Chen L), 王雅东(Wang Y D), 潘牧(Pan M), 电源技术(Chinese Journal of Power Sources). 2014, 1:161.
[8] Holleman A, Wiberg N. "XV 2.1.3". Lehrbuch der Anorganischen Chemie (33rd ed.). de Gruyter. ISBN 3-11-012641-9.
[9] Berger L I. Semiconductor materials. CRC Press. 1996.84. ISBN 0-8493-8912-7.
[10] Durif M T, Averbuch-Pouchot A. Topics in Phosphate Chemistry. Singapore:World Scientific. 1996.3. ISBN 981-02-2634-9.
[11] Greenwood N N, Earnshaw A.Chemistry of the Elements (2nd ed.), Oxford:Butterworth-Heinemann.1997. ISBN 0-7506-3365-4.
[12] Threlfall R E. 100 Years of Phosphorus Making:1851~1951. Oldbury:Albright and Wilson Ltd., 1951.
[13] Mellor J W, Parkes G D. Modern Inorganic Chemistry, 1961, 2(2):18.
[14] Wiberg E, Wiberg N, Holleman A F. Inorganic Chemistry. Academic Press. 2001. 689. ISBN 978-0-12-352651-9.
[15] Hammond C R. The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. 2000.ISBN 0-8493-0481-4.
[16] Curry R. "Hittorf's Metallic Phosphorus of 1865". Lateral Science. 2014.
[17] 吴锋(Wu F). 中国材料进展(Materials China), 2009, 28(7/8):41.
[18] Ito T, Morimoto N, Sadanaga R. Acta Crystallographica., 1952, 5(6):775.
[19] Krebs H, Miiller K. H, Pakulla I, Ziirn G. Angewandte Chemie International Edition, 1955, 67:524.
[20] Thurn H, Krebs P H. Angewandte Chemie International Edition, 1966, 5:12.
[21] Cartz L, Srinivasa S R, Riedner R J, Jorgensen J D, Worlton T G. The Journal of Chemical Physics, 1979, 71(4):1718.
[22] Brown A, Rundqvist S. Acta Crystallographica, 1965, 19(4):684.
[23] Xia F, Wang H, Jia Y. Nat. Commun., 2014, 5:4458.
[24] Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F, Castro Neto A H. Physical Review B, 2014, 90(7):075434.
[25] Tran V, Soklaski R, Liang Y, Yang L. Physical Review B, 2014, 89(23):235319.
[26] Low T, Engel M, Steiner M, Avouris P. Physical Review B, 2014, 90(8):081408.
[27] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A. Nat. Commun., 2014, 5:4651.
[28] Liu H, Neal A. T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. ACS Nano, 2014, 8(4):4033.
[29] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C. Nano Letters, 2014, 14(12):6964.
[30] Liu X, Wood J D, Chen K S, Cho E, Hersam M C. The Journal of Physical Chemistry Letters, 2015, 6(5):773.
[31] Kang J, Wood J D, Wells S A, Lee J H, Liu X, Chen K S, Hersam M C. ACS Nano, 2015, 9(4):3596.
[32] Hanlon D, Backes C, Doherty E M, et al. "Liquid Exfoliation of Solvent-Stabilised Black Phosphorus:Applications Beyond Electronics". Cornell University. arXiv:1501.01881.
[33] Qian J F, Wu X Y, Cao Y L, Ai X P, Yang H X. Angewandte Chemie International Edition, 2013, 52(17):4633.
[34] Stan M C, Zamory J V, Passerini S, Nilges T, Winter M. Journal of Materials Chemistry A, 2013, 1(17):5293.
[35] Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Journal of Crystal Growth, 2014, 405(11):6.
[36] Park C M, Sohn H J. Adv.Mater., 2007, 19:2465.
[37] Bridgman P W. Journal of the American Chemical Society, 1914, 36(7):1344.
[38] Jacobs R B. J. Chem. Phys., 1937, 5:945.
[39] Sun L Q, Li M J, Sun K, Yu S H, Wang R S, Xie H M. J. Phys. Chem. C, 2012, 116(28):14772.
[40] Bai A, Wang L, Li J, He X, Wang J, Wang J. Journal of Power Sources, 2015, 289:100.
[41] Li W, Yang Y, Zhang G, Zhang Y W. Nano Letters, 2015, 15:1691.
[42] Song J, Yu Z, Gordin M L, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X. Nano Letters, 2014, 14:6329.
[43] Kim Y, Ha K H, Oh S M, Lee K T. Chemistry, 2014, 20:11980.
[44] Jung S C, Han Y K. The Journal of Physical Chemistry C, 2015, 119(22):12130.
[45] Shen Z, Hu Z, Wang W, Lee S. F, Chan D K, Li Y, Gu T, Yu J C. Nanoscale., 2014, 6(23):14163.
[46] Xia D, Shen Z, Huang G, Wang W, Yu J C, Wong P K. Environmental Science & Technology, 2015, 49(10):6264.
[47] Hembram K P S S, Jung H, Yeo B C, Pai S J, Kim S, Lee K R, Han S S. The Journal of Physical Chemistry C, 2015, 119(27):15041.
[48] Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. Advanced Materials, 2013, 25(22):3045.
[49] Li W J, Chou S L, Wang J Z, Liu H K, Dou S X. Nano Letters, 2013, 13(11):5480.
[50] Alcantara R, Ortiz G F, Tirado J L, Lavela P. Electrochemical & Solid State Letters, 2005, 8(4):A222.
[51] Stevens D A, Dahn J R. Journal of the Electrochemical Society, 2000, 147(4):1271.
[52] Komaba S, Matsuura Y, Ishikawa T. Electrochemistry Communications, 2012, 21(7):65.
[53] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chemical Communications, 2012, 48(56):7070.
[54] Sun J, Zheng G, Lee H, Liu N, Wang H, Yao H, Yang W, Cui Y. Nano Letters, 2014, 14(8):4573.
[55] Marino C, Debenedetti A, Fraisse B, Favier F, Monconduit L. Electrochemistry Communications, 2011, 13(4):346.
[56] Iijima S. Nature, 1991, 354(6348):56.
[57] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S. Nat. Nano, 2008, 3(4):206.
[58] Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3):183.
[59] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8(3):902.
[60] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8(10):3498.
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[4] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[5] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[6] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[9] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[10] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[11] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[12] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[13] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[14] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[15] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.