English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 415-427 DOI: 10.7536/PC150927 前一篇   后一篇

• 综述与评论 •

内电场与光催化性能调控

张玲, 苏扬, 王文中*   

  1. 中国科学院上海硅酸盐研究所 上海 200050
  • 收稿日期:2015-09-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 王文中 E-mail:wzwang@mail.sic.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 51472260, 51272303, 51272269)资助

Internal Electric Fields within the Photocatalysts

Zhang Ling, Su Yang, Wang Wenzhong*   

  1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2015-09-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51472260, 51272303, 51272269).
光生载流子的高效分离是提升光催化反应效率的重要步骤.近年来,内电场作为提高载流子分离效率的内在驱动力而成为光催化材料研究领域的热点之一.本文综述了国内外通过内电场调控光催化性能的研究动态和主要成果.内电场不仅是电子和空穴分离的内在驱动力,而且影响半导体材料费米能级的变化及载流子浓度分布,进而调控了光催化材料导带和价带的弯曲程度及载流子迁移路径.光催化材料内电场的产生机制主要有铁电材料极化、p-n异质结/多晶结、极化表面、晶面间及非线性光学材料内电场等方式,这些方式有效地提高了光生载流子的分离效率,降低电子和空穴复合的几率,从而进一步提高其光催化性能.最后,本文对构建内电场的未来发展趋势进行了展望,并强调了利用先进物理技术并结合理论计算方法来表征内电场的分布及作用的重要性.
Separation of photogenerated electron-hole pairs is a key step to enhance the photocatalytic activity of semiconductor photocatalysts. Internal electric filed,as a potential driving force to separation of the carriers,has become one of the research hotspots in photocatalytic field recently.In this paper, the literatures about the enhancement of photocatalytic performance based on the internal electric field are reviewed. To align their potentials (Ef), charge transfer occurs between two different component semiconductor materials. This charge redistribution region is known as the space charge region. After the charge transfer, the accumulation of electrons on the semiconductor surface leads to upward band bending. The internal electric field can be formed due to the redistribution of charges, which may in turn facilitate the separation of electrons and holes for reactions. The upward or downward bending can drive the holes/electrons to run up for an oxidation reaction/a reduction reaction, respectively. Internal electric fields within photocatalysts can arise from ferroelectric phenomena, p-n/polymorph junctions,polar surface terminations,and nonlinear optical material. The internal electric fields within photocatalysts mitigate the effects of recombination and back-reaction, then to increase photochemical reactivity. The strategies for manipulation of internal fields are also discussed for the design of efficient photocatalysts. Finally,we highlight some crucial issues in engineering internal electric fields and provide tentative suggestions for future research on increasing their photocatalytic performance. Especially, the importance of using advanced physical technology and theoretical calculation method to characterize the distribution of internal electric field is emphasized.

Contents
1 Introduction
2 Internal electric fields in ferroelectrics
2.1 Internal electric fields in ferroelectrics and photocatalysis reactions
2.2 Factors impacted on the internal electric fields in ferroelectrics
2.3 The application of organic-inorganic perovskite structures in photocatalysts
3 Internal electric fields from p-n junction
3.1 Polaring process within p-n junction
3.2 Photocatalysts with p-n junction
3.3 Factors impacted on p-n junction
4 Internal electric fields from polymorph junctions
5 Polar surface terminations
5.1 Polar surface, internal electric fields and photocatalysis
5.2 Internal electric fields between crystal faces
6 Internal electric fields within noncentronsymmetric compounds
6.1 Nonlinear optical photocatalysts
6.2 Polaring in the photocatalysts with sillenite structure
7 Conclusion and outlook

中图分类号: 

()
[1] BP集团(Group BP).BP 世界能源统计2008 (BP Statistical Review of World Energy, June 2008). 2008 .48.
[2] Das S, Daud W M A W. Renewable and Sustainable Energy Reviews, 2014, 39:765.
[3] Yuan Y P, Ruan L W, Barber J, Loo S C J, Xue C. Energy Environ. Sci., 2014, 7: 3934.
[4] Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem. Rev., 2014, 114: 9987.
[5] Li H J, Zhou Y, Tu W G, Ye J H, Zou Z G. Adv. Funct. Mater., 2015, 25: 998.
[6] Rajh T, Dimitrijevic N M, Bissonnette M, Koritarov T, Konda V. Chem. Rev., 2014, 114:10177.
[7] Wang L Z, Sasaki T. Chem. Rev., 2014, 114: 9455.
[8] Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38: 253.
[9] Asahi R, Morikawa T, Irie H, Ohwaki T. Chem. Rev., 2014, 114: 9824.
[10] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555.
[11] Kavan L, Grätzel M, Gilbert S E, Klemenz C, Scheel H J. J. Am. Chem. Soc., 1996, 118: 6716.
[12] Yang J H, Wang D E, Han H X, Li C. Acc. Chem. Res., 2013, 46: 1900.
[13] Li L, Salvador P A, Rohrer G S. Nanoscale, 2014, 6: 24.
[14] Tiwari D, Dunn S. J. Mater. Sci,, 2009, 44: 5063.
[15] Damjanovic D. Rep. Prog. Phys., 1998, 61: 1267.
[16] Lines M E, Glass A M. Principles and Applications of Ferroelectric and Related Materials. Clarendon Press, Oxford, 1977.
[17] Setter N, Colla E L. Ferroelectric Ceramics. Basel: Birkhauser Verlag, 1993.
[18] Kanhere P, Chen Z. Molecules, 2014, 19: 19995.
[19] Wang W, Tade M O, Shao Z P. Chem. Soc. Rev., 2015, 44: 5371.
[20] Labhasetwar N, Saravanan G, Megarajan S K. Sci. Tech. Adv. Mater., 2015, 3: 036002.
[21] Kalinin S V, Bonnell D A, Alvarez T, Lei X, Ferris J H, Dunn S, Zhang Q. Nano Lett., 2002,2: 589.
[22] Bhardwaj A, Burbure N V, Gamalski A, Rohrer G S. Chem. Mater., 2010, 22: 3527.
[23] Schultz A M, Zhang Y L, Salvador P A, Rohrer G S. ACS Appl. Mater. Interfaces, 2011, 3: 1562.
[24] Zhen C, Yu J C, Liu G. Chem. Commun., 2014, 50:10416.
[25] Lines M E, Glass A M. Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 2001.
[26] Braithwaite N, Weaver G. Materials in Action Series-Electronic Materials inside Electronic Devices, London:Alden Press(London & Northampton) Ltd, 1998.
[27] Su R, Shen Y J, Li L L, Zhang D W, Yang G, Gao C B, Yang Y D. Small, 2015, 11: 202.
[28] Sayed F N, Grover V, Mandal B P, Tyagi A K. J. Phys. Chem. C, 2013, 117: 10929.
[29] Zhang T T, Lei W Y, Liu P, Rodriguez J A, Yu J G, Qi Y, Liu G, Liu M H. Chem. Sci., 2015, 6: 4118.
[30] Inoue Y, Sato K, Sato K, Miyama H. J. Phys. Chem.,1986, 90: 2809.
[31] Akdogan E K, Rawn C J, Porter W D, Payzant E A, Safari A. J. Appl. Phys., 2005, 97: 084305.
[32] Yashima M, Hoshina T, Ishimura D, Kobayashi S, Nakamura W, Tsurumi T, Wada S. J. Appl. Phys.,2005, 98: 014313.
[33] Polking M J, Han M G, Yourdkhani A, Petkov V, Kisielowski C F, Volkov V V, Zhu Y, Caruntu G, Alivisatos A P, Ramesh R. Nat. Mater., 2012, 11:700.
[34] Burbure N V, Salvador P A, Rohrer G S. Chem. Mater., 2010, 22: 5823.
[35] Zhang Y, Schultz A M, Salvador P A, Rohrer G S. J. Mater. Chem., 2011, 21: 4168.
[36] Cui Y F, Briscoe J, Dunn S. Chem. Mater., 2013, 25: 4215.
[37] Hong K S, Xu H, Konishi H, Li X. J. Phys. Chem. Lett., 2010, 1: 997.
[38] Hong K S, Xu H, Konishi H, Li X. J. Phys. Chem. C, 2012,116: 13045.
[39] Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L. Nano Lett., 2015, 15: 2372.
[40] 吕思刘(Li S L). 青岛科技大学硕士论文(Master Degree Thesis of Qingdao University of Science & Technology), 2013.
[41] Gao P, Gratzel M, Nazeeruddin M K. Energy Environ. Sci.,2014, 7: 2448.
[42] Chen Y S, Manser J S, Kamat P V. J. Am. Chem. Soc., 2015, 137: 974.
[43] Gurudaya l, Sabba D, Kumar M H, Wong L H, Barber J, Gratzel M, Mathews N. Nano Lett., 2015, 15: 3833.
[44] Luo J, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Gratzel M. Science, 2014, 345: 1593.
[39] Khaselev O, Turner J A. Science, 1998, 280: 425.
[45] Ran J R, Zhang J, Yu J G. Chem. Soc. Rev., 2014, 43: 7787.
[46] Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43: 7520.
[47] Jiang T F, Xie T F, Zhang Y, Chen L P, Peng L L, Li H Y, Wang D J. Phys. Chem. Chem. Phys., 2010, 12: 15476.
[48] Marschall R. Adv. Funct. Mater., 2014, 24: 2421.
[49] Osterloh F E. Chem. Soc. Rev., 2013, 42: 2294.
[50] Zhao Z W, Sun Y J, Dong F. Nanoscale, 2015, 7: 15.
[51] Liu G, Wang L Z, Yang H G. J. Mater. Chem,, 2010, 20: 831.
[52] Lin Y, Xu Y, Mayer M T, Simpson Z I, McMahon G, Zhou S, Wang D. J. Am. Chem. Soc., 2012, 134: 5508.
[53] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002, 4:198.
[54] Li L, Liu X, Zhang Y, Nuhfer N T, Barmak K, Salvador P A, Rohrer G S. ACS Appl. Mater. Interfaces, 2013, 5: 5064.
[55] Tao J G, Chai J W, Guan L X, Pan J S, Wang S J. Appl. Phys. Lett., 2015, 106: 081602.
[56] Hu C C, Nian J N, Teng H. Sol. Energy Mater. Sol. Cells, 2008, 92: 1071.
[57] Chen S F, Zhao W, Liu W, Zhang H Y, Yu X L. Chem. Eng. J., 2009,155: 466.
[58] Lu M X, Shao C L, Wang K X, Lu N, Zhang X, Zhang P, Zhang M Y, Li X H, Liu Y C. ACS Appl. Mater. Inter faces 2014, 6: 9004.
[59] Hengerer R, Kavan L, Krtil P, Gratzel M. J. Electrochem. Soc., 2000, 147: 1467.
[60] Zhang H Z, Baneld J F. J. Phys. Chem. B, 2000, 104: 3481.
[61] Yang D, Liu H, Zheng Z, Yuan Y, Zhao J C, Waclawik E R, Ke X, Zhu H. J. Am. Chem. Soc., 2009, 131: 17885.
[62] Chan C K, Porter J F, Li Y G, Guo W, Chan C M. J. Am. Ceram. Soc., 1999, 82: 566.
[63] Zhang Q H, Gao L, Guo J K. Appl. Catal. B, 2000, 26: 207.
[64] Wang X, Xu Q, Li M, Shen S, Wang X, Wang Y, Feng Z, Shi J, Han H, Li C. Angew. Chem. Int. Ed., 2012, 51: 13089.
[65] Jin S Q, Wang X, Wang X L, Ju M G, Shen S, Liang W Z, Zhao Y, Feng Z C, Playford H Y, Walton R I, Li C.J. Phys. Chem. C, 2015, 119: 18221.
[66] Liu M C, Jing D W, Zhou Z H. Nat. Comm., 2013, 4 : 2278.
[67] Sun S D, Wang S L, Deng D C. New J. Chem., 2013, 37: 3679.
[68] Sun S D, Deng D C, Song X P. Phys. Chem. Chem. Phys., 2013, 15: 15964.
[69] Sun S D, Deng D C, Kong C C. Dalt. Trans., 2012, 41: 3214.
[70] Liu M C, Wang L Z, Lu G Q, Yao X D, Guo L J. Energy Environ. Sci., 2011, 4: 1372.
[71] Wang Z L. Annu. Rev. Phys. Chem., 2004, 55: 159.
[72] Noguera C. J. Phys.: Condens. Matter., 2000,12: R367.
[73] Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner T S, Thornton G, Harrison N M. Phys. Rev. Lett., 2001,86: 3811.
[74] Freundy H J, Kuhlenbecky H, Staemmler V. Rep. Prog. Phys., 1996, 59: 283.
[75] Wander A, Harrison N M. J. Chem. Phys., 2001,115: 2312.
[76] Yamaguchi H, Komiyama T, Chonan Y, Ishidsuka Y, Ito R, Aoyama T. Phys. Status Solidi C, 2010, 7: 300.
[77] Meyer B, Marx D. Phys. Rev. B, 2003, 67: 035403.
[78] Goniakowski J, Finocchi F, Noguera C. Rep. Prog. Phys., 2008, 71: 016501.
[79] Dulub O, Diebold U, Kresse G. Phys Rev. Lett., 2003, 90: 016102.
[80] Lai J H, Su S H, Chen H H, Huang J C A, Wu C L. Physical Rev. B, 2010, 82: 155406.
[81] Juez A I, Viñes F, Gar?I O L, Gar??aa M F, Illas F. J. Mater. Chem. A, 2015, 3: 8782.
[82] Huang M L, Yan Y, Feng W H, Weng S X, Zheng Z Y, Fu X Z, Liu P. Cryst. Growth Des., 2014, 14: 2179.
[83] Mclaren A, Solis T V, Li G, Tsang S C. J. Am. Chem. Soc., 2009, 131: 12540.
[84] Xu H L, Wang W Z, Zhu W.J. Phys. Chem. B, 2006, 110: 13829.
[85] Liu B, Yang H Q, Wei A H, Zhao H, Ning L C, Zhang C J, Liu S Z. Appl. Catal. B:Environ., 2015,172/173: 165.
[86] Liu B, Ning L C, Zhao H, Zhang C J, Yang H Q, Liu S Z. Phys. Chem. Chem. Phys., 2015, 17: 13280.
[87] Bai S, Jiang J, Zhang Q, Xiong Y J. Chem. Soc. Rev., 2015,44: 2893.
[88] Ohno T, Sarukawa K, Matsumura M. New J. Chem., 2002, 26: 1167.
[89] Pan J, Liu G, Lu G Q, Cheng H M. Angew. Chem. Int. Ed. 2011, 50: 2133.
[90] Zheng Z K, Huang B B, Lu J, Qin X Y, Zhang X Y, Dai Y. Chem. Eur. J., 2011, 17: 15032.
[91] Yu J G, Low J X, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014, 136: 8839.
[92] Ye L Q, Liu J Y, Tian L H, Peng T Y, Zan L. Appl. Catal. B:Environ., 2013, 134/135: 60.
[93] Li R G, Zhang F X, Wang D G, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Nat. Commun., 2013, 4: 1432.
[94] Zhu J, Fan F T, Chen R T, An H Y, Feng Z C, Li C. Angew. Chem. Int. Ed., 2015, 54: 9111.
[95] Wang B, Shen S H, Guo L J. Appl. Catal. B:Environ., 2015, 166/167: 320.
[96] Lee S, Liang C W, Martin L W. ACS Nano, 2011, 5: 3736.
[97] Sun S D, Kong C C, You H J, Song X P, Ding B J, Yang Z M. CrystEngComm, 2012, 14: 40.
[98] Li P, Zhou Y, Zhao Z Y, Xu Q F, Wang X Y, Xiao M, Zou Z G. J. Am. Chem. Soc., 2015, 137: 9547.
[99] Wu Y C, Chen C T. J. Cryst. Growth., 1996, 166: 533.
[100] Fan X Y, Zang L, Zhang M, Qiu H S, Wang Z, Yin J, Jia H Z, Pan S L, Wang C Y. Chem. Mater., 2014, 26: 3169.
[101] Li M M, Dai Y., Ma X C, Li Z J, Huang B B. Phys. Chem. Chem. Phys., 2015, 17: 17710.
[102] Huang H W, He Y, Guo Y X, He R, Lin Z S, Zhang Y H. Solid State Sci., 2015, 46: 37e42.
[103] Huang H W, He Y, He R, Lin Z S, Zhang Y H, Wang S C. Inorg. Chem., 2014, 53: 8114.
[104] Wang W J, Huang B B, Ma X C, Wang Z Y, Qin X Y, Zhang X Y, Dai Y, Whangbo M H.Chem. Eur. J., 2013, 19: 14777.
[105] Li Z J, Dai Y J, Ma X C, Zhu Y T, Huang B B. Phys. Chem. Chem. Phys., 2014, 16: 3267.
[106] Wang G J, Jing Y, Ju J, Yang D F, Yang J, Gao W L, Cong R H, Yang T. Inorg. Chem., 2015, 54: 2945.
[107] Zhang R, Dai Y, Lou Z Z, Li Z J, Wang Z Y, Yang Y M, Qin X Y, Zhang X Y, Huang B B. CrystEngComm, 2014, 16: 4931.
[108] Li J, Yu Y, Zhang L Z. Nanoscale, 2014, 6: 8473.
[109] An H Z, Du Y, Wang T M, Wang C, Hao W C, Zhang J Y.Rare Metal., 2008, 27:243.
[110] Zhang L, Wang W Z, Sun S M, Jiang D, Gao E P. Appl. Catal. B: Environ., 2015, 162: 470.
[111] Li J, Zhang L Z, Li Y J, Yu Y. Nanoscale, 2014, 6: 167.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
阅读次数
全文


摘要

内电场与光催化性能调控