English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 1-8 DOI: 10.7536/PC150906 前一篇   后一篇

• 综述与评论 •

环丁醇开环官能化反应:通过C—C键断裂区域选择性构建γ位取代脂肪酮的新策略

晏宏, 朱晨*   

  1. 苏州大学材料与化学化工学部 江苏省有机合成重点实验室 苏州 215123
  • 收稿日期:2015-09-01 修回日期:2015-10-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 朱晨 E-mail:chzhu@suda.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21402134)和江苏省自然科学基金项目(No.BK20140306)资助

Ring Openings of tert-Cyclobutanols: New Strategy towards the Synthesis of γ-Substituted Ketones via C—C Bond Cleavage

Yan Hong, Zhu Chen*   

  1. Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received:2015-09-01 Revised:2015-10-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21402134) and the Jiangsu Provincial Natural Science Foundation of China(No. BK20140306).
环丁醇开环官能化反应是制备γ位取代脂肪酮的重要策略之一。通过区域选择性的C—C键断裂和新化学键(例如:C—C、C—N、C—O、C—F键等)的构建,环丁醇开环反应可以高效地在羰基的γ位引入各种各样的取代基团。环丁醇的开环反应途径主要分为两种:1)通过过渡金属钯和铑催化的β-碳消除反应开环;2)自由基历程的环丁醇单电子氧化开环。本文依据不同的开环反应机理,对环丁醇的开环官能化反应进行了阐述和展望。
Ketone is an important structural moiety in organic chemistry due to its wide occurrence in organic compounds and the highly transformable ability into other functionalities. Therefore, the efficient synthesis of ketones is of great significance. Recently, the ring-opening functionalization of tert-cyclobutanols represents one of the most important approaches to synthesize γ-substituted alkyl ketones. A variety of functional groups can be efficiently introduced to the γ-position of carbonyl via the regioselective C—C bond cleavage and a new chemical bond (C—C, C—N, C—O, C—F, etc.) formation. Two major pathways might be involved in the ring-opening reactions of tert-cyclobutanols: a) transition metals, such as Pd(Ⅱ) and Rh(Ⅰ), catalyzed β-carbon elimination of tert-cyclobutanols, and b) radical-mediated ring opening via the single electron oxidation of tert-cyclobutanols. The recent advances in the ring openings of tert-cyclobutanols and the related mechanistic details are described in this review.

Contents
1 Introduction
2 Transition-metal catalyzed ring openings of tert-cyclobutanols via β-carbon elimination
2.1 Pd-catalyzed ring-opening reactions of tert-cyclobutanols
2.2 Rh-catalyzed ring-opening reactions of tert-cyclobutanols
3 Radical-mediated ring openings of tert-cyclobutanols
3.1 Oxidative ring opening of tert-cyclobutanols to construct carbon-carbon bond
3.2 Oxidative ring opening of tert-cyclobutanols to construct carbon-heteroatom bonds
4 PIDA-mediated ring-opening hydroxylation of tert-cyclobutanols via carbocation pathway
5 Conclusion and outlook

中图分类号: 

()
[1] Singh P N D, Muthukrishnan S, Murthy R S, Klima R F, Mandel S M, Hawk M, Yarbrough N, Gudmundsdóttir A D. Tetrahedron Lett., 2003, 44: 9169.
[2] Sankuratri N, Janzen E G, West M S, Poyer J L. J. Org. Chem., 1997, 62: 1176.
[3] Kritzyn A M, Komissarov V V. Russ. J. Bioorg. Chem., 2005, 31: 549.
[4] Merschaert A, Boquel P, van Hoeck J P, Gorissen H, Borghese A, Bonnier B, Mockel A, Napora F. Org. Process Res. Dev., 2006, 10: 776.
[5] Zanardi A, Mata J A, Peris E, Organometallics, 2009, 28: 1480.
[6] Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett., 2012, 14: 3044.
[7] Ruan J, Saidi O, Iggo J A, Xiao J. J. Am. Chem. Soc., 2008, 130: 10510.
[8] Marek I, Masarwa A, Delaye P O, Leibeling M. Angew. Chem. Int. Ed., 2015, 54: 414.
[9] Seiser T, Saget T, Tran D N, Cramer N. Angew. Chem. Int. Ed., 2011, 50: 7740.
[10] Souillart L, Cramer N. Chem. Rev., 2015, DOI: 10.1021/acs.chemrev.5b00138.
[11] Nishimura T, Ohe K, Uemura S. J. Am. Chem. Soc., 1999, 121: 2645.
[12] Nishimura T, Uemura S. J. Am. Chem. Soc. 1999, 121: 11010.
[13] Nishimura T, Matsumura S, Maeda Y, Uemura S. Chem. Commun., 2002, 50.
[14] Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc., 2003, 125: 8862.
[15] Ziadi A, Martin R. Org. Lett., 2012, 14: 1266.
[16] Ziadi A, Correa A, Martin R. Chem. Commun., 2013, 49: 4286.
[17] Seiser T, Cramer N. J. Am. Chem. Soc., 2010, 132: 5340.
[18] Ishida N, Nakanishi Y, Murakami M. Angew. Chem. Int. Ed., 2013, 52: 11875.
[19] Griller D, Ingold K U. Acc. Chem. Res., 1980, 13: 317.
[20] Liu K E, Johnson C C, Newcomb M, Lippard S J. J. Am. Chem. Soc., 1993, 115: 939.
[21] Meyer K, Rocek J. J. Am. Chem. Soc., 1972, 94: 1209.
[22] Rocek J, Radkowsky A E. J. Am. Chem. Soc., 1968, 90: 2986.
[23] Minisci F. Synthesis, 1973, 1.
[24] Kapustina N I, Sokova L L, Ignatenko A V, Nikishin G I. Russ. Chem. Bull., 1993, 42: 1839.
[25] Nikishin G I, Sokova L L, Kapustina N I. Russ. Chem. Bull. Int. Ed., 2001, 50: 1118.
[26] Nikishin G I, Sokova L L, Kapustina N I. Russ. Chem. Bull. Int. Ed., 2002, 10: 1812.
[27] Kapustina N I, Sokova L L, Nikishin G I. Russ. Chem. Bull., 1996, 45: 1246.
[28] Kapustina N I, Sokova L L, Makhaev V D, Petrava L A, Nikishin G I. Russ. Chem. Bull., 1999, 48: 2080.
[29] Casey B M, Eakin C A, Flowers R A. Tetrahedron Lett., 2009, 50: 1264.
[30] Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity and Applications, 2nd ed. Wiley-VCH, Weinheim, 2013.
[31] Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. (Eds. Gouverneur V, Muller K). London: Imperial College Press, 2012.
[32] Ni C, Zhu L, Hu J. Acta Chim. Sinica, 2015, 73: 90.
[33] Zhao H, Fan X, Yu J, Zhu C. J. Am. Chem. Soc., 2015, 137: 3490.
[34] Ishida N, Okumura S, Nakanishi Y, Murakami M. Chem. Lett., 2015, 44: 821.
[35] Ren R, Zhao H, Huan L, Zhu C. Angew. Chem. Int. Ed., 2015, 54: 12692.
[36] Yu J, Zhao H, Liang S, Bao X, Zhu C. Org. Biomol. Chem., 2015, 13: 7924.
[37] Fujioka H, Komatsu H, Miyoshi A, Murai K, Kita Y. Tetrahedron Lett., 2011, 52: 973.
[38] Fan X, Zhao H, Zhu C. Acta Chim. Sinica, 2015, 73: 979.
[39] Yu J, Yan H, Zhu C. Angew. Chem. Int. Ed., 2016, 55: 1143.
[40] Ren R, Wu Z, Xu Y, Zhu C. Angew. Chem. Int. Ed., 2016, DOI: 10.1002/anie.201510973.
[41] Fan X, Zhao H, Yu J, Bao X, Zhu C. Org. Chem. Front., 2016, DOI: 10.1039/c5qo00368g.
[1] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[2] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[3] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[4] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[5] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[6] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[7] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[8] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[9] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[10] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[11] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[12] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[13] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[14] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[15] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.