English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 317-327 DOI: 10.7536/PC150819 前一篇   后一篇

• 综述与评论 •

芳基末端炔的合成

雷朋飞1, 张文生2, 匡春香3, 江玉波1*   

  1. 1. 昆明理工大学理学院 昆明 650500;
    2. 焦作师范高等专科学校理工学院 焦作 454001;
    3. 同济大学化学系 上海 200092
  • 收稿日期:2015-08-01 修回日期:2015-09-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 江玉波 E-mail:ybjiang@kmust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21262020)资助

Synthesis of Terminal Arylacetylenes

Lei Pengfei1, Zhang Wensheng2, Kuang Chunxiang3, Jiang Yubo1*   

  1. 1. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China;
    2. School of Science and Technology, Jiaozuo Teachers'College, Jiaozuo 454001, China;
    3. Department of Chemistry, Tongji University, Shanghai 200092, China
  • Received:2015-08-01 Revised:2015-09-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21262020).
芳基末端炔是一类重要的有机合成中间体,在众多领域具有广泛的应用,其合成备受广大研究者的高度关注。本文阐述了末端炔的合成研究进展,着重综述了近十年来芳基末端炔合成发展情况,包括分别以卤代烯烃、卤代芳烃、芳醛等为原料的末端炔的合成方法。文章还对一些方法的应用做了介绍,并对重要反应机理作了分析,最后对该类化合物的合成情况进行了总结并展望了未来发展方向。
As a kind of important organic synthesis intermediates, terminal arylacetylenes are widely used in many fields and concerned by many researchers. This review mainly describes the synthesis of terminal arylacetylenes by using vinyl bromides, aryl halideas, aromatic aldehyde as the starting materials in recent ten years. The applications and mechanisms of some reactions are also described. The further work needed to do and the development trends in this field are proposed.

Contents
1 Introduction
2 Synthesis of terminal arylacetylenes
2.1 From vinyl halides
2.2 From aryl halides
2.3 From aromatic aldehydes
2.4 Other methods
3 Conclusion

中图分类号: 

()
[1] Kanki K, Masuda T. Macromolecules, 2003, 36:1500.
[2] Portenkirchner E, Schlager S, Apaydin D, Oppelt K, Himmelsbach M, Egbe D A M, Neugebauer H, Knor G, Yoshida T, Sariciftci N S. Electrocatalysis, 2015, 6(2):185.
[3] Yang H S, Jin Y H, Du Y, Zhang W. J. Mater. Chem. A, 2014, 2:5986.
[4] Johnson D.G, Lynam J M, Mistry N S, Slattery J M, Thatcher R J, Whitwood A C. J. Am. Chem. Soc., 2013, 135:2222.
[5] Zavesky B P, Babij N R, Wolfe J P. Org. Lett., 2014, 16:4952.
[6] Leventis N, Rawashdeh A M M, Elder I A, Yang J H, Dass A, Chariklia S L. Chem. Mater., 2004, 16:1493.
[7] Otsuka I, Hongo T, Nakade H, Narumi A, Sakai R, Satoh T, Kaga H, Kakuchi T. Macromolecules, 2007, 40:8930.
[8] Zhang H Y, Song J X, Deng J P. Macromol. Rapid. Comm., 2014, 35:1216.
[9] Zhang H Y, Yang W T, Deng J P. J Polym. Sci. Pol. Chem., 2015, 53:1816.
[10] Saeed I, Shiotsuki M, Masuda T. Macromolecules, 2006, 39:5347.
[11] Xu H P, Jin J K, Mao Y, Sun J Z, Yang F, Yuan W Z, Dong Y Q, Wang M, Tang B Z. Macromolecules, 2008, 41:3874.
[12] Onishi N, Shiotsuki M, Masuda T, Sano N, Sanda F. Organometallics, 2013, 32:846.
[13] 江玉波(Jiang Y B), 匡春香(Kuang C X). 化学进展(Progress in Chemistry), 2012, 24(10):1983.
[14] Jung J H, Lim Y G, Lee K H, Koo B T. Tetrahedron Lett., 2007, 48:6442.
[15] Kawamichi T, Inokuma Y, Kawano M, Fujita M. Angew. Chem. Int. Ed., 2010, 49:2375.
[16] Wang C F, Makila E M, Bonduelle C, Rytkonen J, Raula J, Almeida S, Narvanen A, Salonen J J, Lecommandoux S, Hirvonen J T, Santos H A. ACS. Appl. Mater. Interfaces, 2015, 7(3):2006.
[17] Kantheti S, Narayan R, Raju K V S N. RSC Adv., 2015, 5:3687.
[18] Wang Z J, Gao Y, Hou Y L, Zhang C, Yu S J, Bian Q, Li Z M, Zhao W G. Eur. J. Med. Chem., 2014, 86:87.
[19] Chen Y B, Xiao Y X, Shao X S, Xu X Y, Li Z. Chin. J. Chem., 2014, 32:592.
[20] Nguyen T M, Manohar N, Nicewicz D A. Angew. Chem. Int. Ed., 2014,53:6198.
[21] Vaughn T. H. J. Am. Soc. Chem., 1934, 56:2064.
[22] Mieczyslaw M, Alexey A C. Tetrahedron Lett., 2002, 58:7295.
[23] Kuang C X, Yang Q, Senboku H, Tokuda M. Tetrahedron, 2005, 61:4043.
[24] Cheng X Z, Jia J, Kuang C X. Chin. J. Chem., 2011, 29:2350.
[25] Sanaa S K, Sachin U S, Yoel S. Tetrahedron Lett., 2012, 53:2295.
[26] Gronheid R, Zuilhof H, Hellings M G, Cornelisse J, Lodder G. J. Org. Chem., 2003, 68:3205.
[27] Azzena U, Pittalis M, Dettori G, Pisano L, Azara E. J. Organomet. Chem., 2007, 692:3892.
[28] Taillefer M, Ouali A, Renard B, Spindler J F. Chem. Eur. J., 2006, 12:5301.
[29] Masaru O, Yuji M. J. Org. Chem., 2009, 74:442.
[30] Zhao M, Kuang C X, Yang Q, Cheng X Z. Tetrahedron Lett., 2011, 52:992.
[31] Li S H, Chen X B, Hu Y W, Yuan L P, Chen S H, Wu P, Wang W, Zhang S L, Zhang W. Adv. Synth. Catal., 2015, 357:553.
[32] Negishi E, KoTora M, Xu C D. J. Org. Chem., 1997, 62:8957.
[33] Vasilevsky S F, Klyatskaya S V, Elguero J. Tetrahedron Lett., 2004, 60:6685.
[34] Richardson C, Reed C A. J. Org. Chem., 2007, 72:4750.
[35] Gorl C, Alt H G. J. Organomet. Chem., 2007, 692:4580.
[36] Pauly A C, Theato P. J. Polym. Sci. Pol. Chem., 2011, 49:211.
[37] Prasad C K, Raju P V S M. J. Appl. Chem., 2014, 3:1460.
[38] Gehringer M, Forster M, Laufer S A. ACS Comb. Sci., 2015, 17:5.
[39] Li Z A, Wu W B, Qiu G F, Yu G, Liu Y Q, Ye C, Qiu J G, Li Z. J. Polym. Sci. Pol. Chem., 2011, 49:1977.
[40] Wang Y, Huang B, Sheng S R, Cai M Z. J. Chem. Res., 2007, 12:728.
[41] Hao W Y, Wang Y, Sheng S R, Cai M Z. J. Chem. Res., 2008, 11:615.
[42] Xu Y P, Hu R H, Cai M Z. Chin. Chem. Lett., 2008, 19:783.
[43] Kyungho P, Thiruvengadam P, Ayoung P, Sunwoo L. Tetrahedron Lett., 2012, 53:733.
[44] Li J, Huang P C. Beilstein J. Org. Chem., 2011, 7:426.
[45] Corey E J, Fuchs P L. Tetrahedron Lett., 1972, 36:3769.
[46] Hijfte L V, Kolb M, Wite P. Tetrahedron Lett., 1989, 28:3655.
[47] Carran J, Waschbusch R, Marinetti A, Savignac P. Synthesis, 1996, (12):1494.
[48] Beshai M, Dhudshia B, Mills R, Thadani A N. Tetrahedron Lett., 2008, 49:6794.
[49] Li P F, Chen C F. J. Org. Chem., 2012, 77:9250.
[50] Yempala T, Sridevi J P, Yogeeswari P, Sriram D, Kantevari S. Eur. J. Med. Chem., 2014, 71:160.
[51] Wang Z, Campagna S, Yang K H, Xu G Y, Pierce M E, Fortunak J M, Confalone P N. J. Org. Chem., 2000, 65:1889.
[52] Illa O, Bagan X, Cazorla A M, Lyon C, Baceiredo A, Branchadeu V, Ortuno R M. J. Org. Chem., 2006, 71:5320.
[53] Quesada E, Taylor R J K. Tetrahedron Lett., 2005, 46:6473.
[54] Huang K W, Grill D C, Han J H, Szalda D J, Fujita E. Inorg. Chim. Acta, 2008, 361:3327.
[55] Aitken R A, Seth S. Synlett, 1990, 4:211.
[56] Katritzky A R, Wang J, Karodia N, Li J Q. J. Org. Chem., 1997, 62:4142.
[57] Mao S, Gao Y R, Zhu X Q, Guo D D, Wang Y Q. Org. Lett., 2015, 17:1692.
[58] Bejot R, Tisserand S, Li D R, Falck J R, Mioskowski C. Tetrahedron Lett., 2007, 48:3855.
[1] 董军, 许家喜. 烯亚砜化合物的制备及反应概述*[J]. 化学进展, 0, (): 11-11.
[2] 董玉, 李海波, 李津, 冯磊, 张志伟*. 高三尖杉酯碱和三尖杉酯碱的合成研究[J]. 化学进展, 2018, 30(12): 1827-1835.
[3] 黄依铃, 魏文廷*. 水介质中的有机自由基反应[J]. 化学进展, 2018, 30(12): 1819-1826.
[4] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[7] 贾斌, 马养民*, 陈镝, 陈璞, 胡岩. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 1067-1081.
[8] 符志成, 许家喜*. 氮杂环丁烷的合成[J]. 化学进展, 2018, 30(8): 1047-1066.
[9] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[10] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[11] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[12] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[13] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[14] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[15] 陈劲进, 常丹, 肖福红, 邓国军*. 基于环己酮氧化脱氢构建碳-碳与碳-杂键[J]. 化学进展, 2018, 30(5): 564-577.
阅读次数
全文


摘要