English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 391-400 DOI: 10.7536/PC150812 前一篇   

• 综述与评论 •

亚稳态分子间复合物Al/Bi2O3及其应用

王亚军*, 江自生, 冯长根   

  1. 北京理工大学爆炸科学与技术国家重点实验室 北京 100081
  • 收稿日期:2015-08-01 修回日期:2015-11-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 王亚军 E-mail:yajunwang@bit.edu.cn
  • 基金资助:
    爆炸科学与技术国家重点实验室(北京理工大学)自主课题项目(No.YBKT16-06)资助

Metastable Intermolecular Composite Al/Bi2O3 and Its Applications

Wang Yajun*, Jiang Zisheng, Feng Changgen   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2015-08-01 Revised:2015-11-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work is supported by the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No.YBKT16-06).
具有输出压力较高、燃烧效率高、能量释放速率快、安全环保等特点的亚稳态分子间复合物(MIC)Al/Bi2O3,在新型火工药剂、炸药和推进剂等含能材料研究领域具有良好的应用前景。本文系统概括了亚稳态分子间复合物Al/Bi2O3的反应机理模型、制备方法及其应用。首先介绍并比较了MIC的几种反应机理及模型,详述了目前能够较合理地解释和计算Al/Bi2O3输出压力的CJ爆轰模型和热平衡模型。然后综述了纳米Bi2O3及Al/Bi2O3的制备方法,通过改变制备方法可以获得不同形貌、结构和燃烧性能的纳米Al/Bi2O3。同时,分析了反应物粒径和添加物对纳米Al/Bi2O3燃烧性能的影响。此外,简要介绍了纳米Al/Bi2O3的应用研究进展。最后,对亚稳态分子间复合物Al/Bi2O3的研究现状进行了总结,并展望了未来可能的发展前景和方向。
Metastable intermolecular composite (MIC) Al/Bi2O3 has good features of high combustion efficiency, fast energy releasing rate, high pressure pulse, good safety performance and being environment-friendly. It shows good application prospects in pyrotechnics, explosives and propellants, etc. In this review, reaction mechanisms and models, preparation and applications of the metastable intermolecular composite Al/Bi2O3 are summarized. First, various theories and models which were used to explain the reaction mechanism of thermites are introduced and compared. The models of the CJ(Chapman-Jouguet) detonation and thermal equilibrium which could interpret and simulate output pressure of Al/Bi2O3 reasonably are discussed in detail. Second, the preparing methods of Bi2O3 and Al/Bi2O3 are summarized. By using different preparing processes, the morphologies, microstructures and combustion performances of composites could be regulated. Meanwhile, the effects of reactants particle size and various additives in preparing Al/Bi2O3 on its combustion performances are analyzed. Furthermore, a brief introduction of the application research is also presented. Finally, we proposed prospects about the metastable intermolecular composite Al/Bi2O3.

Contents
1 Introduction
2 Thermite reaction mechanism
2.1 Ignition mechanism
2.2 Pressure generation model
3 Preparation methods
3.1 Preparation of nano Bi2O3
3.2 Preparation of nano Al/Bi2O3
4 Performance tuning of Al/Bi2O3
4.1 Particle size of material
4.2 Additive
5 Applications of Al/Bi2O3
5.1 Initiating explosives
5.2 Miniature initiating explosive devices
5.3 Propellants
6 Conclusion and outlook

中图分类号: 

()
[1] Balaz P, Achimovicova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutkova E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K. Chem. Soc. Rev., 2013, 42(18):7571.
[2] Rossi C, Kaili Z, Estëve D, Alphonse P, Tailhades P, Vahlas C. J. Microelectromech. Syst., 2007, 16(4):919.
[3] Asay B W, Son S F, Busse J R, Oschwald D M. Propell. Explos. Pyrot., 2004, 29(4):216.
[4] Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah M R. J. Phys. Chem. C, 2010, 114(20):9191.
[5] Fischer S H, Grubelich M C. SAND98-1176C. Albuquerque:Sandia National Labs, 1998.
[6] Dreizin E L. Prog. Energ. Combust., 2009, 35(2):141.
[7] Sarawadekar R G, Agrawal J P. Defence Sci. J., 2008, 58(4):486.
[8] 杨光成(Yang G C), 谯志强(Jiao Z Q). 含能材料(Chin. J. Energ. Mater.), 2014, (3):279.
[9] Rossi C, Estève A, Vashishta P. J. Phys. Chem. Solids, 2010, 71(2):57.
[10] Rossi C. Propell. Explos. Pyrot., 2014, 39(3):323.
[11] Puszynski J. J. Therm. Anal. Calorim., 2009, 96(3):677.
[12] Martirosyan K S, Wang L, Vicent A, Luss D. Propell. Explos. Pyrot., 2009, 34(6):532.
[13] Wang L, Luss D, Martirosyan K S. J. Appl. Phys., 2011, 110(7):074311.
[14] Poda A R, Moser R D, Cuddy M F, Doorenbos Z, Lafferty B J, Weiss C A, Harmon A, Chappell M A, Steevens J A. J. Nanomater. Mol. Nanotechnol., 2013, 2(1):1000105.
[15] Glavier L, Taton G, Ducéré J, Baijot V, Pinon S, Calais T, Estève A, Djafari Rouhani M, Rossi C. Combust. Flame, 2015, 162(5):1813.
[16] Ostrowski P P, Bichay M M, Allen T M, Sanders V E, Son S F. AIAA Paper 2005-3514. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, AZ, 2005.
[17] Sanders V E, Asay B W, Foley T J, Tappan B C, Pacheco A N, Son S F. J. Propul. Power, 2007, 23(4):707.
[18] 安亭(An T), 赵凤起(Zhao F Q), 裴庆(Pei Q), 仪建华(Yi J H), 郝海霞(Hao H X), 徐司雨(Xu S Y), 谭艺(Tan Y). 固体火箭技术(J. Solid Rocket Technol.), 2012, 35(6):773.
[19] Levitas V I, Asay B W, Son S F, Pantoya M. J. Appl. Phys., 2007, 101(8):083524.
[20] Levitas V I. Phil. Trans. R. Soc. A, 2013, 371:20120215.
[21] Levitas V I, Pantoya M L, Chauhan G, Rivero I. J. Phys. Chem. C, 2009, 113(32):14088.
[22] Levitas V I, Pantoya M L, Dikici B. Appl. Phys. Lett., 2008, 92(1):011921.
[23] Levitas V I, Pantoya M L, Watson K W. Appl. Phys. Lett., 2008, 92(20):201917.
[24] Pantoya M L, Levitas V I, Granier J J, Henderson J B. J. Propul. Power, 2009, 25(2):465.
[25] Rai A, Lee D, Park K, Zachariah M R. J. Phys. Chem. B, 2004, 108(39):14793.
[26] Rai A, Park K, Zhou L, Zachariah M R. Combust. Theor. Model., 2006, 10(5):843.
[27] Piekiel N W, Zhou L, Sullivan K T, Chowdhury S, Egan G C, Zachariah M R. Combust. Sci. Technol., 2014, 186(9):1209.
[28] Jian G, Chowdhury S, Sullivan K, Zachariah M R. Combust. Flame, 2013, 160(2):432.
[29] Jacob R J, Jian G, Guerieri P M, Zachariah M R. Combust. Flame, 2015, 162(1):258.
[30] Martirosyan K S, Zyskin M, Jenkins C M, Yuki Horie Y. J. Appl. Phys., 2012, 112(9):94319.
[31] Baijot V, Glavier L, Ducéré J, Djafari-Rouhani M, Rossi C, Estève A. Propell. Explos. Pyrot., 2015, 40(3):402.
[32] 李卫(Li W), 黄伯云(Huang B Y), 周科朝(Zhou K C), 杨华(Yang H). 功能材料(J. Funct. Mater.), 2005(2):279.
[33] He W D, Qin W, Wu X H, Ning H L. Mater. Lett., 2007, 61(19/20):4100.
[34] 丁鹏(Ding P), 杜尧国(Du R G), 徐自力(Xu Z L). 吉林大学学报(理学版)(J. Jilin Univ. (Sci. Ed.)). 2004(3):451.
[35] Faisal M, Ibrahim A A, Bouzid H, Al-Sayari S A, Al-Assiri M S, Ismail A A. J. Mol. Catal. A:Chem., 2014, 387:69.
[36] 陈世柱(Chen S Z),尹志民(Yin Z M). 材料科学与工程(Mater. Sci. Eng.), 1998(3):62.
[37] Martirosyan K S, Luss D. Chem. Eng. Technol., 2009, 32(9):1376.
[38] 刘燕(Liu Y), 印会鸣(Ying H M), 吴艳凤(Wu Y F), 周爱秋(Zhou A Q), 许效红(Xu X H). 硅酸盐通报(Bull. Chin. Ceram. Soc.), 2010, 29(4):751.
[39] Shen X, Wu S, Zhao H, Liu Q. Physica E, 2007, 39(1):133.
[40] Lunca Popa P, Sønderby S, Kerdsongpanya S, Lu J, Bonanos N, Eklund P. J. Appl. Phys., 2013, 113(4):046101.
[41] Steele J A, Lewis R A. Opt. Mater. Express, 2014, 4(10):2133.
[42] Martirosyan K S, Wang L, Vicent A, Luss D. Nanotechnology, 2009, 20(40):405609.
[43] Patel V K, Ganguli A, Kant R, Bhattacharya S. RSC Adv., 2015, 5:14967.
[44] Martirosyan K S. J. Mater. Chem., 2011, 21:9400.
[45] Wang L. Doctoral Dissertation of University of Houston, 2011.
[46] You L, Chen Z, Zou X, Ding H, Chen W, Chen L, Yuan G, Wang J. ACS Nano, 2012, 6(6):5388.
[47] Drache M, Roussel P, Wignacourt J. Chem. Rev., 2007, 107(1):80.
[48] Puszynski J A, Bulian C J, Swiatkiewicz J J. J. Propul. Power, 2007, 23(4):698.
[49] Nellums R R, Terry B C, Tappan B C, Son S F, Groven L J. Propell. Explos. Pyrot. 2013, 38(5):605.
[50] FlorinPetre C, Chamberland D, Ringuette T, Ringuette S, Paradis S, Stowe R. Energ. Mater. Chem. Propul., 2014, 13(6):479.
[51] Umbrajkar S M, Seshadri S, Schoenitz M, Hoffmann V K, Dreizin E L. J. Propul. Power, 2008, 24(2):189.
[52] Williams R A, Patel J V, Ermoline A, Schoenitz M, Dreizin E L. Combust. Flame, 2013, 160(3):734.
[53] Monk I, Williams R, Liu X H, Dreizin E L. Combust. Sci. Technol., 2015, 187(8):1276.
[54] Thiruvengadathan R, Chung S W, Basuray S, Balasubramanian B, Staley C S, Gangopadhyay K, Gangopadhyay S. Langmuir, 2014, 30(22):6556.
[55] Sullivan K, Young G, Zachariah M R. Combust. Flame, 2009, 156(2):302.
[56] Nellums R R, Son S F, Groven L J. Propell. Explos. Pyrot., 2014, 39(3):463.
[57] Puchades I, Hobosyan M, Fuller L F, Liu F, Thakur S, Martirosyan K S, Lyshevski S E. Nanotechnology (IEEE-NANO), 2014 IEEE 14th International Conference on New York, 2014. 83.
[58] 安亭(An T), 赵凤起(Zhao F Q), 裴庆(Pei Q), 肖立柏(Xiao L B), 徐司雨(Xu S Y), 高红旭(Gao H X), 邢晓玲(Xing X L). 无机化学学报(Chin. J. Inorg. Chem.), 2011, 27(2):231.
[59] 安亭(An T), 赵凤起(Zhao F Q), 郝海霞(Hao H X), 马海霞(Ma H X), 姚二岗(Yao E G), 杨勇(Yang Y), 谭艺(Tan Y). 火炸药学报(Chin. J. Explos. Propell.), 2011, 34(1):67.
[1] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[2] 周汉强, 于明飞, 陈巧珊, 王建春, 毕进红. 碘氧化铋光催化剂的合成、改性及净化一氧化氮[J]. 化学进展, 2021, 33(12): 2404-2412.
[3] 赵宝东, 高福磊, 汪营磊, 刘亚静, 陈斌, 潘永飞. 火药用叠氮含能增塑剂[J]. 化学进展, 2019, 31(2/3): 475-490.
[4] 王亚军, 李泽雪, 于海洋, 冯长根. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.
[5] 魏平玉,杨青林,郭林. 卤氧化铋化合物光催化剂[J]. 化学进展, 2009, 21(09): 1734-1741.
[6] 黄海丰,孟子晖,周智明,高海翔,章军,吴玉凯. 含能盐和含能离子液体[J]. 化学进展, 2009, 21(01): 152-163.
[7] 阳世清,徐松林,黄亨健,张炜,张兴高. 高氮化合物及其含能材料*[J]. 化学进展, 2008, 20(04): 526-537.