English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 121-130 DOI: 10.7536/PC150745 前一篇   后一篇

• 综述与评论 •

水热炭的制备、性质及应用

吴艳姣, 李伟, 吴琼, 刘守新*   

  1. 东北林业大学材料科学与工程学院 哈尔滨 150040
  • 收稿日期:2015-07-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 刘守新 E-mail:liushouxin@126.com
  • 基金资助:
    林业公益性行业科研专项经费项目(No.201504605)、国家自然科学基金项目(No.31570567,31500467)、中央高校基本科研业务费专项资金项目(No.2572014EB01)和浙江省林业工程重中之重一级学科开放基金项目(No.2014lygcz017)资助

Preparation, Properties and Applications of Hydrochar

Wu Yanjiao, Li Wei, Wu Qiong, Liu Shouxin*   

  1. Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
  • Received:2015-07-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the Special Fund for Forest Scientific Research in the Public Welfare (No. 201504605), the National Natural Science Foundation of China (No. 31570567, 31500467),the Fundamental Research Funds for the Central Universities(No. 2572014EB01), and the Zhejiang Key Level 1 Discipline of Forestry Engineering (No. 2014lygcz017).
水热炭是一种以生物质或其组分为原料,以水为溶剂和反应介质,在150~375 ℃和自生压力下,经水热反应得到的以碳为主体,含氧官能团丰富,热值(HHV)高的黑色固体产物。水热炭的性质主要受原料种类、反应温度和时间的影响。水热炭在吸附、多孔炭制备、催化剂载体和清洁能源等领域展现出了良好的应用前景。本文综述了水热炭的制备、性质和形成机理,并对水热炭的应用进行了总结,对水热炭未来的发展方向进行了展望。
Hydrochar is a black carbonaceous solid which is derived from biomass via hydrothermal carbonization condition: using water as solvent and reaction medium, at the temperature of 150~375 ℃ and autogenously pressure. Rich oxygen-containing functional groups, together with high heat value (HHV) are the distinguished properties of hydrochar. Their properties are influenced by raw materials type, hydrothermal carbonization temperature and time. It has revealed a promising perspective in absorbent, preparation of porous carbon, catalyst carrier and clean energy. In this study, the production, properties and formation mechanism of hydrochar are summarized. Meanwhile, the applications of hydrochar are reviewed and the future development is prospected.

Contents
1 Introduction
2 Production of hydrochar
2.1 Influence of feedstock
2.2 Influence of hydrothermal temperature
3 Properties of hydrochar
3.1 Surface chemical properties
3.2 High heat value
3.3 Microcrystalline structure
3.4 Morphological characterization
4 Formation mechanism of hydrochar
5 Applications of hydrochar
5.1 Adsorption of heavy metal ion
5.2 Preparation of porous carbon
5.3 Solid acid catalyst
5.4 Clean energy
6 Conclusion

中图分类号: 

()
[1] Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J. Bioresour. Technol., 2011, 102: 9255.
[2] Hoekman S K, Broch A, Robbins C, Zielinska B, Felix L. Biomass Conversion and Biorefinery, 2013, 3: 113.
[3] Wu C H, Chang C Y, Lin J P, Hwang J Y. Fuel, 1997, 76: 1151.
[4] Bini R, Ceppatelli M, Citroni M, Schettino V. Chem. Phys., 2012, 398: 262.
[5] Benavente V, Calabuig E, Fullana A. J. Anal. Appl. Pyrolysis, 2015, 113: 89.
[6] Yan W, Hastings J T, Acharjee T C, Coronella C J, Vásquez V R. Energy Fuels, 2010, 24: 4738.
[7] Kambo H S, Dutta A. Energ. Convers. Manage., 2015, 105: 746.
[8] Pala M, Kantarli I C, Buyukisik H B, Yanik J. Bioresour. Technol., 2014, 161: 255.
[9] Liu Z, Balasubramanian R. Appl.Energ., 2014, 114: 857.
[10] Lynam J G, Coronella C J, Yan W, Reza M T, Vasquez V R. Bioresour. Technol., 2011, 102: 6192.
[11] Lynam J G, Reza M T, Vasquez V R, Coronella C J. Fuel, 2012, 99: 271.
[12] Novianti S, Biddinika M K, Prawisudha P, Yoshikawa K. Procedia Environ. Sci., 2014, 20: 46.
[13] Sevilla M, Fuertes A B. Energ. Environ. Sci., 2011, 4(5): 1765.
[14] Steinbeiss S, Gleixner G, Antonietti M. Soil Biol. Biochem., 2009, 41(6): 1301.
[15] Li Y, Liu X. Mater. Chem. Phys., 2014, 148(1): 380.
[16] Basso D, Weiss-Hortala E, Patuzzi F, Castello D, Baratieri M, Fiori L. Bioresour. Technol., 2015, 182: 217.
[17] Libra J A, Ro K S, Kammann C, Funke A, Berge N D, Neubauer Y. Biofuels, 2011, 2(1): 71.
[18] Kurse A, Dahmen N. J. Supercrit. Fluid., 2015, 96: 36.
[19] Zhang L, Xu C C, Champagne P. Energy Convers. Manage., 2010, 51(5): 969.
[20] He M, Hu Z, Xiao B, Li J, Guo X, Luo S, Yang F, Feng Y, Yang G J, Liu S M. Int. J. Hydrogen Energy, 2009, 34(1): 195.
[21] Buah W K, Cunliffe A M, Williams P T. Process Saf. Environ. Prot., 2007, 85(5): 450.
[22] Ryu C, Sharifi V N, Swithenbank J. Int. J. Energ. Res., 2007, 31(2): 177.
[23] Berge N D, Ro K S, Mao J, Flora J R, Chappell M A, Bae S. Environ. Sci. Technol., 2011, 45(13): 5696.
[24] Phan A N, Ryu C, Sharifi V N, Swithenbank J. J. Anal. Appl. Pyrolysis, 2008, 81(1): 65.
[25] Xiao G, Jin B S, Zhong Z P, Chi Y, Ni M J, Cen K F, Xiao R, Huang Y J, Huang H. J. Environ. Sci., 2007, 19(11): 1398.
[26] Bosmans A, Helsen L. Third International Symposium on Energy from Biomass and Waste. Environmental Sanitary Engineering Centre, Venice, Italy, 2010. 227.
[27] Sevilla M, Maciá-Agulló J A, Fuertes A B. Biomass Bioenergy, 2011, 35(7): 3152.
[28] Bach Q V, Tran K Q, Skreiberg Q, Khalil R A, Phan A N. Fuel, 2014, 137: 375.
[29] Kang W, Li H, Yan Y, Xiao P, Zhu L, Tang K. J. Phys. Chem.C, 2011, 115(14): 6250.
[30] Lu X, Jordan B, Berge N D. Waste Manage., 2012, 32(7): 1353.
[31] Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I. Bioresour. Technol., 2011, 102(5): 4157.
[32] Akaln M K, Tekin K, Karagöz S. Bioresour. Technol., 2012, 110: 682.
[33] Jamari S S, Howse J R. Biomass Bioenergy, 2012, 47: 82.
[34] Biller P, Friedman C, Ross A B. Bioresour. Technol., 2013, 136(3):188.
[35] Takata E, Tsutsumi K, Tsutsumi Y, Tabata K. Bioresour. Technol., 2013, 143(6):53.
[36] Tekin K, Karagöz S, Bekta? S. Renew. Sust. Energ. Rev., 2014, 40: 673.
[37] Liu C, Sun R. Cereal Straw As A Resource for Sustainable Biomaterials Biofuels.1st ed. 2010.131.
[38] Hodgson E M, Nowakowski D J, Shield I, Riche A, Bridgwater A V, Clifton-Brown J C. Bioresour. Technol., 2011, 102(3): 3411.
[39] Sevilla M, Gu W, Falco C, Titirici M M, Fuertes A B, Yushin G. J. Power Sources, 2014, 267: 26.
[40] Zhang J, Lin Q, Zhao X. Journal of Integrative Agriculture, 2014, 13(3): 471.
[41] Kang S, Li X, Fan J, Jie C. Bioresour. Technol., 2012, 110: 715.
[42] Poerschmann J, Weiner B, Baskyr I. Chemosphere, 2013, 92(11): 1472.
[43] Hwang I H, Aoyama H, Matsuto T, Nakagishi T, Matsuo T. Waste Manage., 2012, 32(3): 410.
[44] Liu Z, Quek A, Hoekman S K, Balasubramanian R. Fuel, 2013, 103: 943.
[45] Kang S M, Xiang L, Juan F, Jie C. Ind. Eng. Chem. Res., 2012, 51: 9023.
[46] Parshetti G K, Hoekman S K, Balasubramanian R. Bioresour. Technol., 2013, 135: 683.
[47] Reza M T, Borrego A G, Wirth B. Int. J. Coal Geol., 2014, 134: 74.
[48] Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H. Energy, 2013, 58(9): 376.
[49] Reza M T, Rottler E, Herklotz L, Wirth B. Bioresour. Technol., 2015: 336.
[50] Wild T, Bergins C, Strauβ K. Chem. Ing. Tech., 2004, 76:1715.
[51] Funke A, Ziegler F. Biofuels, Bioprod. Bioref., 2010, 4(2): 160.
[52] Khan A A, De Jong W, Jansens P J, Spliethoff H. Fuel Process. Technol., 2009, 90(1): 21.
[53] Álvarez-Murillo A, Román S, Ledesma B, Sabio E. J. Anal. Appl. Pyrol., 2015, 113: 307.
[54] Kambo H S, Dutta A. Appl.Energ., 2014, 135: 182.
[55] Hoekman S K, Broch A, Robbins C. Energy Fuels, 2011, 25(4): 1802.
[56] Sevilla M, Fuertes A B. Carbon, 2009, 47(9): 2281.
[57] Liu Y, Fang Y, Lu X. Chem. Eng. J., 2013, 229:105.
[58] Hu J, Shen D, Wu S, Zhang H, Xiao R. J. Anal. Appl. Pyrolysis, 2014, 106: 118.
[59] Lu L, Kong C, Sahajwalla V, Harris D. Fuel, 2002, 81(9): 1215.
[60] Yin Y, Zhang J, Sheng C, Korean J. Chem. Eng., 2009, 26(3):895.
[61] Maeda R N, Serpa V I, Rocha V A L, Mesquita R A A, Anna L M M S, Castro A M D. Process Biochem., 2011, 46(5): 1196.
[62] Falco C, Marco-Lozar J P, Salinas-Torres D, Morallón E, Cazorla-Amorós D, Titirici M M. Carbon, 2013, 62: 346.
[63] Roman S, Nabais J M V, Ledesma B, González J F, Laginhas C, Titirici M M. Microporous Mesoporous Mat., 2013, 165: 127.
[64] Amonette J E, Joseph S. Biochar Environ. Manage.: Sci. Technol., 2009, 33.
[65] Fuertes A B, Arbestain M C, Sevilla M, Fiol S, Smernik R J, Aitkenhead W P. Soil Res., 2010, 48(7): 618.
[66] van Zandvoort I, Wang Y, Rasrendra C B, Van Eck E R, Bruijnincx P C, Heeres H J. ChemSusChem, 2013, 6(9): 1745.
[67] Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M M, Antonietti M. J. Phys. Chem.C, 2009, 113(22): 9644.
[68] van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vrise J G. Chem. Rev., 2013, 113(3): 1499.
[69] Lange J P, van der Heide E, van Buijtenen J, Price R. ChemSusChem, 2012, 5(1): 150.
[70] Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Biomass Bioenergy, 2010, 34(3): 290.
[71] Britt P F, Iii A C, Thomas K B, Lee S K. J. Anal. Appl. Pyrolysis, 1995, 33: 1.
[72] Hu J, Shen D, Xiao R, Wu S, Zhang H. Energy Fuels, 2012, 27(1): 285.
[73] Yong T L K, Matsumura Y. Ind. Eng. Chem. Res., 2013, 52(16): 5626.
[74] Falco C, Baccile N, Titirici M M. Green Chem., 2011, 13(11): 3273.
[75] Sevilla M, Titirici M. Boletín del Grupo Español del Carbón, 2012, 25: 7.
[76] Pyrzyńska K, Bystrzejewski M. Colloids and Surface A:Physicochemical and Engineering Aspects, 2010, 362: 102.
[77] Bhatnagar A, Hogland W, Marques M, Sillanpää M. Chem. Eng. J., 2013, 219: 499.
[78] Wu Q, Li W, Liu S. Mater. Res. Bull., 2014, 60: 516.
[79] Demir-Cakan R, Baccile N, Antonietti M, Titirici M M. Chem. Mater., 2009, 21(3): 484.
[80] Zhang Z, Cao X, Liang P, Liu Y H. J. Radioanal. Nucl. Chem., 2013, 295(2): 1201.
[81] Hao W, Björkman E, Lilliestrle M, Hedin N. Appl.Energ., 2013, 112: 526.
[82] Pari G, Darmawan S, Prihandoko B. Procedia Environ. Sci., 2014, 20: 342.
[83] Jain A, Balasubramanian R, Srinivasan M P. Micropor. Mesopor. Mat., 2015, 203: 178.
[84] Zhu X, Liu Y, Qian F, Chao Z, Zhang S, Chen J. Bioresour. Technol., 2014, 154: 209.
[85] Qi X, Li L, Wang Y, Liu N, Smith R L. Chem. Eng. J., 2014, 256: 407.
[86] Palomar J, Lemus J, Gilarranz M A, Rodriguez J J. Carbon, 2009, 47(7): 1846.
[87] Lemus J, Palomar J, Heras F, Gilarranz M A, Rodriguez J J. Sep. Purif. Methods, 2012, 97: 11.
[88] Martín-Jimeno F J, Suárez-García F, Paredes J I,Martínez-Alonso A, Tascón J. Carbon, 2015, 81: 137.
[89] Zheng M, Zhang H, Xiao Y, Dong H, Liu Y, Xu R. Mater. Lett., 2013, 109: 279.
[90] Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S. J. Mater. Chem., 2012, 22(43): 23186.
[91] Li Y, Li X M. RSC Advances, 2013, 3(7): 2398.
[92] Gao F, Shao G, Qu J, Lv S, Li Y, Wu M. Electrochim. Acta, 2015, 155: 201.
[93] Kalpana D, Omkumar K S, Kumar S S, Renganathan N G. Electrochim. Acta, 2006, 52(3): 1309.
[94] Zhang C, Wang H, Liu F, Wang L, He H. Cellulose, 2013, 20(1): 127.
[95] van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W. Energ. Environ. Sci., 2011, 4(9): 3601.
[96] Calucci L, Rasse D P, Forte C. Energy Fuels, 2012, 27(1): 303.
[97] Qi X, Lian Y, Yan L, Smith R L. Catal. Commun., 2014, 57: 50.
[98] Shuai L, Pan X. Energ. Environ. Sci., 2012, 5(5): 6889.
[99] Yan L, Liu N, Wang Y, Machida H, Qi X. Bioresour. Technol., 2014, 173: 462.
[100] Reza M T, Uddin M H, Lynam J G, Coronella C J. Biomass Bioenergy, 2014, 63: 229.
[101] Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S. Appl. Biochem. Biotechnol., 2010, 160(2): 539.
[102] Tremel A, Stemann J, Herrmann M, Erlach B, Spliethoff H. Fuel, 2012, 102: 396.
[103] Schimmelpfennig S, Müller C,Grünhage L, Koch C, Kammann C. Agric. Ecosyst. Environ., 2014, 191: 39.
[104] Busch D, Stark A, Kammann C I, Glaser B. Ecotox. Environ. Safe., 2013, 97(5): 59.
[105] Fang J, Gao B, Chen J, Zimmerman A R. Chem. Eng. J.,2015, 267: 253.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[12] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[15] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
阅读次数
全文


摘要

水热炭的制备、性质及应用