English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 40-50 DOI: 10.7536/PC150740 前一篇   后一篇

• 综述与评论 •

二氧化钛在钙钛矿太阳电池中的应用

阙亚萍1, 翁坚1, 胡林华1*, 戴松元1,2*   

  1. 1. 中国科学院合肥物质科学研究院应用技术研究所 中国科学院新型薄膜太阳电池重点实验室 合肥 230031;
    2. 华北电力大学可再生能源学院 新型薄膜太阳电池北京市重点实验室 北京 102206
  • 收稿日期:2015-07-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 胡林华, 戴松元 E-mail:solarhu@sina.com;sydai@ipp.cas.cn
  • 基金资助:
    国家自然科学基金项目(No.21173228,U1205112,21173227)和国家高技术研究发展计划(863)项目(No.2015AA050602)资助

Applications of Titanium Dioxide in Perovskite Solar Cells

Que Yaping1, Weng Jian1, Hu Linhua1*, Dai Songyuan1,2*   

  1. 1. Key Laboratory of Novel Thin-Film Solar Cells, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. Beijing Key Laboratory of Novel Thin-Film Solar Cells, School of Renewable Energy, North China Electric Power University, Beijing 102206, China
  • Received:2015-07-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21173228,U1205112,21173227) and the National High Technology Research and Development Program of China (No. 2015AA050602).
纳米TiO2由于具有合适的禁带宽度、良好的光电化学稳定性、制作工艺简单等特点,目前广泛应用于染料敏化、量子点和钙钛矿等太阳电池中。作为电池的重要组成部分之一,纳米TiO2晶体尺寸、颗粒大小和制备方法等明显影响电池的光伏性能,相关研究工作一直是染料敏化、量子点和钙钛矿等太阳电池方面的重点。本文综述了纳米TiO2作为致密层和骨架层在钙钛矿太阳电池中的应用研究进展,主要讨论了纳米TiO2的不同形貌、制备方法以及结构等对电池光电性能的影响,并针对纳米TiO2在后续对电池性能提升方面进行了展望。
TiO2 is widely used in photovoltaic field like dye-sensitized solar cells, quantum dot-sensitized solar cells and so on because of its proper forbidden band width, good optical and chemical stability, nontoxicity, corrosion resistance and simple manufacturing process etc. Recently, inorganic-organic hybrid perovskite solar cell has attracted great attention as a new class of photovoltaic devices and its rapid development has led the power conversion efficiency up to 20%. TiO2 nanomaterial appears to be a good candidate to be applied in it, which is usually used as compact layer or skeleton layer in perovskite solar cells. As an important part, its crystalline phase, particle size, morphology, preparation methods, film thickness and coverage have great influence on the performance of solar cells. This paper summarizes recent progress of titanium dioxide in the application of perovskite solar cells. We introduce the role TiO2 play in constructing perovskite solar cells and discuss different preparation methods (high/low temperature) and various optimization methods (modulation of structure, size, shape and interface interaction) of TiO2. What's more, we analyze the influence of these differences on the performance of perovskite solar cells. In the end, further optimization of TiO2 materials in the applications of perovskite solar cells is also prospected.

Contents
1 Introduction
2 Recent progress of TiO2 compact layer
2.1 Preparation methods of TiO2 compact layer
2.2 Interface optimization of TiO2 compact layer
2.3 The film thickness of TiO2 compact layer
3 Recent progress of TiO2 scaffold layer
3.1 Particle size, pore size and film thickness of TiO2 scaffold layer
3.2 Crystal phase and morphology of TiO2
3.3 Surface treatment of TiO2 scaffold layer
3.4 The influence of TiO2 on J-V hysteresis
4 Conclusion and prospects

中图分类号: 

()
[1] Bai Y, Mora S I, De A F, Bisquert J, Wang P. Chem. Rev., 2014, 114: 10095.
[2] Mou P, García S, Santiago P, Pal U. J. Phys. Chem. C, 2007, 111: 96.
[3] Oregan B, Grätzel M. Nature, 1991, 353: 737.
[4] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M. Science, 2011, 334: 629.
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131: 6050.
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342: 341.
[7] He M, Zheng D, Wang M, Lin C, Lin Z. J. Mater. Chem. A, 2014, 2: 5994.
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131: 6050.
[9] Huan Z, Qi C, Gang L, Song L, Tze-bing S, Hsin S D, Ziruo H, Jing Y, Yong L, Yang Y. Science, 2014, 345: 542.
[10] Huang F, Dkhissi Y, Huang W, Xiao M, Benesperi I, Rubanov S, Zhu Y, Lin X, Jiang L, Zhou Y, Gray W A, Etheridge J, McNeill C R, Caruso R A, Bach U, Spiccia L, Cheng Y B. Nano Energy, 2014, 10: 10.
[11] Bi D, Moon S J, Häggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A. RSC Adv., 2013, 3: 18762.
[12] Michael M L, Henry J S, Joël T, Tsutomu M,Takurou N M. Science, 2012,338: 643.
[13] Zhao Y, Zhu K. J. Am. Chem. Soc., 2014, 136: 12241.
[14] Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I. Energ. Environ. Sci., 2014, 7: 2642.
[15] Krüger J, Plass R, Cevey L, Piccirelli M, Grätzel M, Bach U. Appl. Phys. Lett., 2001, 79: 2085.
[16] Lellig P, Niedermeier M A, Rawolle M, Meister M, Laquai F, Muller B P, Gutmann J S. Phys. Chem. Chem. Phys., 2012, 14: 1607.
[17] Peng B, Jungmann G, Jäger C, Haarer D, Schmidt H W, Thelakkat M. Coordin. Chem. Rev., 2004, 248: 1479.
[18] Park N G. Mater. Today, 2014, 18: 65.
[19] Li B, Wang L, Kang B, Wang P, Qiu Y. Sol. Energy Mater. Sol. Cells, 2006, 90: 549.
[20] Fonash S J. Solar Cell Device Physics. 2nd ed. British: Elsevier, 2010.146.
[21] Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X. ACS Appl. Mater. Interfaces, 2014, 6: 15959.
[22] Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L. Appl. Phys. Express, 2014, 7: 052301.
[23] Qi C, Hua Z, Ziruo H, Song L, Hsin S D, Hsin H W, Yong L, Gang L, Yang Y. J. Am. Chem. Soc., 2014, 136: 622.
[24] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2: 591.
[25] Liu M, Johnston M B, Snaith H J. Nature, 2013, 501: 395.
[26] Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Grätzel M. Nature, 2013, 499: 316.
[27] Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J. Chem. Eur. J., 2014, 20: 10894.
[28] Gao Q, Yang S, Lei L, Zhang S, Cao Q, Xie J, Li J, Liu Y. Chem. Lett., 2015, 44: 624.
[29] Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J. Energ. Environ. Sci., 2014, 7: 1142.
[30] Byeong J K, Dong H K, Yoo Y L. Energ. Environ. Sci., 2015, 8: 916.
[31] Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grätzel M. Nano Lett., 2014, 14: 2591.
[32] Ito S, Tanaka S, Manabe K, Nishino H. J. Phys. Chem. C, 2014, 118: 16995.
[33] Wang J T, Ball J M, Barea E M, Abate A, Alexander J A, Huang J, Saliba M, Mora S I, Bisquert J, Snaith H J, Nicholas R J. Nano Lett., 2014, 14: 724.
[34] Qin L, Xie Z, Yao L, Yan Y, Pang S, Wei F, Qin G G. Phys. Status Solidi RRL, 2014, 8: 912.
[35] Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C Z, Friend R H, Jen A K Y, Snaith H J. ACS Nano, 2014, 8: 12701.
[36] Cojocaru L, Uchida S, Sanehira Y, Nakazaki J, Kubo T, Segawa H. Chem. Lett., 2015, 44: 674.
[37] Sandeep K P, Abate A, Ruckdeschel P, Roose B, Karl C G, Yana V, Aditya S, Shun I W, Derek J H, Nakita N, Alessandro S, Ullrich W, Richard F, Henry J S, Ullrich S. Adv. Funct. Mater., 2014, 24: 6046.
[38] Xiong Y, Yan G, Zhao X, Peng X, Meng H, Bin L. Nano Res., 2015, 8: 1997.
[39] Nagaoka H, Ma F, Quilettes D W, Vorpahl S M, Glaz M S, Colbert A E, Ziffer M E, Ginger D S. J. Phys. Chem. Lett., 2015, 6: 669.
[40] Wang X, Fang Y, He L, Wang Q, Wu T. Mat. Sci. Semicon. Proc., 2014, 27: 569.
[41] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517: 476.
[42] Yi Z, Alexandre M N, Kai Z. Faraday Discuss., 2014, 176: 301.
[43] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J. Nat. Commun., 2013, 4: 2885.
[44] Zhao Y, Zhu K. J. Phys. Chem. Lett., 2014, 5: 4175.
[45] Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M. Nature, 1998, 395: 583.
[46] Murugadoss G, Mizuta G, Tanaka S, Nishino H, Umeyama T, Imahori H, Ito S. APL Mat., 2014, 2: 081511.
[47] Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3: 4088.
[48] Jeong H I, In H J, Norman P, Grätzel M, Nam G P. Nat. Nanotechnology, 2014, 9: 927.
[49] Lee J W, Lee T Y, Yoo P J, Grätzel M, Mhaisalkar S, Park N G. J. Mater. Chem. A, 2014, 2: 9251.
[50] Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X, Han H. J. Mater. Chem. A, 2015, 3: 9103.
[51] Leijtens T, Lauber B, Eperon G E, Stranks S D, Snaith H J. J. Phys. Chem. Lett., 2014, 5: 1096.
[52] Sarkar A, Jeon N J, Noh J H, Seok S I. J. Phys. Chem. C, 2014, 118: 16688.
[53] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2012, 134: 17396.
[54] Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H. J. Phys. Chem. Lett., 2014, 5: 2160.
[55] Dar M I, Ramos F J, Xue Z, Liu B, Ahmad S, Shivashankar S A, Nazeeruddin M K, Grätzel M. Chem. Mater., 2014, 26: 4675.
[56] Son D Y, Im J H, Kim H S, Park N G. J. Phys. Chem. C, 2014, 118: 16567.
[57] Bi D, Boschloo G, Schwarzmuller S, Yang L, Johansson E M, Hagfeldt A. Nanoscale, 2013, 5: 11686.
[58] Gao X F, Li J Y, Joel B, Hou Y, Guan D S, Chen J H, Yuan C. Chem. Commun., 2014, 50: 6368.
[59] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G. Nano Lett., 2013, 13: 2412.
[60] Chen H, Wei Z, Yan K, Yi Y, Wang J, Yang S. Faraday Discuss., 2015, 176: 271.
[61] Salazar R, Altomare M, Lee K, Tripathy J, Kirchgeorg R, Nguyen N T, Mokhtar M, Alshehri A, Al-Thabaiti S A, Schmuki P. ChemElectroChem, 2015, 2: 824.
[62] Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H, Yang S. Nanoscale, 2013, 5: 3245.
[63] Dharani S, Mulmudi H K, Yantara N, Thu Trang P T, Park N G, Grätzel M, Mhaisalkar S, Mathews N, Boix P P. Nanoscale, 2014, 6: 1675.
[64] Yang M, Guoa R, Kadela K, Liu Y, O'Shea K, Bone R, Wang X, He J, Li W. J. Mater. Chem. A, 2014, 2: 19616.
[65] Yang M, Ding B, Lee J K. J. Power Sources, 2014, 245: 301.
[66] Lee S, Noh J H. J. Phys. Chem. C, 2009, 113: 6878.
[67] Cao K, Cui J, Zhang H, Li H, Song J, Shen Y, Cheng Y, Wang M. J. Mater. Chem. A, 2015, 3: 9116.
[68] Yue Y, Yang X, Wu Y, Salim N T, Islam A, Noda T, Han L. ChemSusChem., 2015, 8: 2625.
[69] Qin P, Domanski A L, Chandiran A K, Berger R, Butt H J, Dar M I, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin M K, Grätzel M. Nanoscale, 2014, 6: 1508.
[70] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338: 643.
[71] Mahmood K, S. Swain B, R. Kirmani A, Amassian A. J. Mater. Chem. A, 2015, 3: 9051.
[72] Oh L S, Kim D H., Lee J A, Shin S S, Lee J W, Park I J, Ko M J, Park N G, Pyo S G, Hong K S, Kim J Y. J. Phys. Chem. C, 2014, 118: 22991.
[73] Marchioro A, Teuscher J, Friedrich D, Kunst M, Moehl T, Grätzel M, Moser J E. Nat. Photonics, 2014, 8: 250.
[74] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. Adv. Mater., 2013, 25: 3727.
[75] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J. Adv. Mater., 2014, 26: 4107.
[76] Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K. Adv. Mater., 2014, 26: 3748.
[77] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I. Nat. Photonics, 2013, 7: 486.
[78] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W. J. Phys. Chem. Lett., 2014, 5: 1511.
[79] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Nat. Mater., 2014, 13: 897.
[80] Kim H S, Park N G. J. Phys. Chem. Lett., 2014, 5: 2927.
[81] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. Energ. Environ. Sci., 2015, 8: 995.
[1] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[2] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[3] 李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893.
[4] 单雪燕, 王时茂, 孟钢, 方晓东. 钙钛矿太阳电池电子传输层与光吸收层的界面工程[J]. 化学进展, 2019, 31(5): 714-722.
[5] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[6] 王桂强, 段彦栋, 张娟, 林原, 禚淑萍. 染料敏化太阳能电池掺杂TiO2纳晶光阳极[J]. 化学进展, 2014, 26(07): 1255-1264.
[7] 王会香, 姜东, 吴东, 李德宝, 孙予罕 . TiO2光催化还原CO2[J]. 化学进展, 2012, 24(11): 2116-2123.
[8] 李晔飞, 刘智攀*. 固液界面光催化裂解水的理论进展[J]. 化学进展, 2012, 24(06): 957-963.
[9] 许宜铭. 环境污染物的光催化降解:活性物种与反应机理*[J]. 化学进展, 2009, 21(0203): 524-533.
[10] 赵丹,孙春燕,陈春城,马万红,赵进才. 新型污染物多溴联苯醚和氰尿酸的光化学降解*[J]. 化学进展, 2009, 21(0203): 400-405.
[11] 杨旭一,黄其煜. 有机电解液在阳极氧化法制备TiO2纳米管中的应用*[J]. 化学进展, 2009, 21(01): 116-120.
[12] 林华香,王绪绪,付贤智. TiO2表面羟基及其性质*[J]. 化学进展, 2007, 19(05): 665-670.
[13] 郑青,周保学,白晶,蔡伟民,廖俊生. TiO2纳米管阵列及其应用[J]. 化学进展, 2007, 19(01): 117-121.
[14] 王晓冬,金振声,张治军. 纳米管钛酸钠及其衍生物[J]. 化学进展, 2006, 18(09): 1208-1217.
[15] 刘中清,葛昌纯. 非金属改性可见光诱导的TiO2光催化[J]. 化学进展, 2006, 18(0203): 168-175.