English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 149-162 DOI: 10.7536/PC150719 前一篇   后一篇

• 综述与评论 •

蛋白表面分子印迹技术

张现峰1*, 杜学忠2   

  1. 1. 蚌埠学院应用化学与环境工程系 蚌埠 233030;
    2. 南京大学化学化工学院 介观化学教育部重点实验室 南京 210023
  • 收稿日期:2015-07-01 修回日期:2015-08-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 张现峰 E-mail:zxf@bbc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21273112,21503004)和安徽省自然科学基金项目(No.1508085QB32)资助

Protein Surface Imprinting Technology

Zhang Xianfeng1*, Du Xuezhong2   

  1. 1. Department of Applied Chemistry and Environmental Engineering, Bengbu College, Bengbu 233030, China;
    2. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2015-07-01 Revised:2015-08-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273112, 21503004) and the Anhui Provincial Natural Science Foundation (No. 1508085QB32).
蛋白印迹材料在生物分离、生物传感和医用生物材料等领域具有很强的应用价值并受到广泛关注。尽管小分子印迹技术已经成功应用于很多领域,但蛋白分子印迹仍然是挑战性研究课题。本文总结了蛋白表面印迹技术领域的研究进展,根据不同的蛋白表面印迹材料,详细叙述了蛋白表面分子印迹薄膜、核壳微球、纳米线、凝胶微粒、单层膜等印迹材料的制备过程、印迹方法和选择识别性能,讨论了蛋白表面分子印迹方法的优缺点,阐明了蛋白分子印迹未来发展的方向。
Protein-imprinted materials have drawn great attention for their applications in bioseparation, biosensing and biomedical materials. Despite the success of small molecular imprinting technology in many areas, protein imprinting remains a challenge. This review gives an overview of the progress in protein surface imprinting technology. The preparation process, imprinting methods, and selective recognition ability of the different imprinting materials, including protein surface imprinting membranes, core-shell structured microspheres, nanowires, microgels, and monolayers, are detailed. The advantages and disadvantages of the protein surface imprinting methods are discussed, and the trends and possible future development direction are also elaborated.

Contents
1 Introduction
2 Materials for protein surface imprinting
2.1 Protein surface imprinting membranes
2.2 Protein surface imprinting core-shell structured microspheres
2.3 Protein surface imprinting nanowires
2.4 Protein surface imprinting microgels
2.5 Protein surface imprinting monolayers
3 Conclusion and outlook

中图分类号: 

()
[1] Wullff G, Sarhan A. Angew. Chem. Int. Ed., 1972, 11: 341.
[2] Vlatakis G, Andersson L I, Muller R, Mosbach K. Nature, 1993, 361: 645.
[3] Wulff G. Angew. Chem. Int. Ed. Engl., 1995, 34: 1812.
[4] Schillemans J P, Nostrum C F. Nanomedicine, 2006, 1: 437.
[5] Bossi A, Bonini F, Turner A P, Piletsky S A. Biosens. Bioelectron., 2007, 22: 1131.
[6] Yilmaz E, Haupt K, Mosbach K. Angew. Chem. Int. Ed., 2000, 39: 2115.
[7] 盖青青(Gai Q Q), 刘秋叶(Liu Q Y), 何锡文(He X W), 李文友(Li W Y), 陈朗星(Chen L X), 张玉奎(Zhang Y K). 化学进展(Progress in Chemistry), 2008, 20(6): 957.
[8] 闫长领(Yan C L), 卢雁(Lu Y). 化学进展(Progress in Chemistry), 2008, 20(6): 969.
[9] Mao X, Liang W A, Peng X H, Tang S Q. Recent Pat. Nanotech., 2010, 4: 85.
[10] Hansen D E. Biomaterials, 2007, 28: 4178.
[11] Janiak D S, Kofinas P. Anal. Bioanal. Chem., 2007, 389: 399.
[12] Turner N W, Jeans C W, Brain K R, Allender C J, Hlady V, Britt D W. Biotechnol. Prog., 2006, 22: 1474.
[13] Shi H, Tsai W B, Garrison M D, Ferrari S, Ratner B D. Nature, 1999, 398: 593.
[14] Shi H, Ratner B D. Biomed. Mater. Res., 2000, 49: 1.
[15] Kim E, Kim H C, Lee S G, Lee S J, Go T J, Baek C S, Jeong S W. Chem. Commun., 2011, 47: 11900.
[16] Li L, Yang L, Xing Z, Lu X, Kan X. Analyst, 2013, 138: 6962.
[17] Prasad B B, Prasad A, Tiwari M P. Biosens. Bioelectron., 2013, 39: 236.
[18] Wang X, Dong J, Ming H, Ai S. Analyst, 2013, 138: 1219.
[19] Karimian N, Vagin M, Zavar M H A, Chamsaz M, Turner A P F, Tiwari A. Biosens. Bioelectron., 2013, 50: 492.
[20] Komarova E, Aldissi M, Bogomolova A. Analyst, 2015, 140: 1099.
[21] Ramanaviciene A, Ramanavicius A. Biosens. Bioelectron., 2004, 20: 1076.
[22] Wu S, Tan W, Xu H. Analyst, 2010, 135: 2523.
[23] Sun S, Chen L, Shi H, Li Y, He X. J. Electroanal. Chem., 2014, 734: 18.
[24] Li Y, Hong M, Bin Q, Lin Z, Cai Z, Chen G. Biosens. Bioelectron., 2013, 42: 612.
[25] Moreira F T, Sharma S, Dutra R A, Noronha J P, Cass A E, Sales M G. Biosens. Bioelectron., 2013, 45: 237.
[26] Bognár J, Szücs J, Dorkó Z, Horváth V, Gyurcsányi R E. Adv. Funct. Mater., 2013, 23: 4703.
[27] Tai D F, Lin C Y, Wu T Z, Chen L K. Anal. Chem., 2005, 77: 5140.
[28] Rick J, Chou T C. Anal. Chim. Acta, 2005, 542: 26.
[29] Lee M H, Thomas J L, Tseng H Y, Lin W C, Liu B D, Lin H Y. ACS Appl. Mater. Interfaces, 2011, 3: 3064.
[30] Dechtrirat D, Gajovic-Eichelmann N, Bier F F, Scheller F W. Adv. Funct. Mater., 2014, 24: 2233.
[31] Wang Y, Zhang Q, Ren Y, Jing L, Wei T. Chem. Res. Chinese U., 2013, 30: 42.
[32] Chou P C, Rick J, Chou T C. Anal. Chim. Acta, 2005, 542: 20.
[33] Zayats M, Kanwar M, Ostermeier M, Searson P C. Macromolecules, 2011, 44: 3966.
[34] Fukazawa K, Li Q, Seeger S, Ishihara K. Biosens. Bioelectron., 2013, 40: 96.
[35] Wang S S, Ye J, Bie Z J, Liu Z. Chem. Sci., 2014, 5: 1135.
[36] Bi X, Liu Z. Anal. Chem., 2014, 86: 959.
[37] Bi X D, Liu Z. Anal. Chem., 2014, 86: 12382.
[38] Yin D, Ulbricht M. Biomacromolecules, 2013, 14: 4489.
[39] Yin D, Ulbricht M. J. Mater. Chem. B, 2013, 1: 3209.
[40] Lv Y, Tan T, Svec F. Biotechnol. Adv., 2013, 31: 1172.
[41] Luo J, Jiang S S, Liu X Y. J. Phys. Chem. C, 2013, 117: 18448.
[42] Glad M, Norrlöw O, Sellergren B, Siegbahn N, Mosbach K. J. Chromatogr. A, 1985, 347: 11.
[43] Kempe M, Glad M, Mosbach K. J. Mol. Recognit., 1995, 8: 35.
[44] Chen H, Kong J, Yuan D, Fu G. Biosens. Bioelectron., 2014, 53: 5.
[45] Li S W, Yang K G, Liu J X, Jiang B, Zhang L H, Zhang Y K. Anal. Chem., 2015, 87: 4617.
[46] Tan C J, Tong Y W. Anal. Chem., 2007, 79: 299.
[47] Yan C L, Lu Y, Gao S Y. J. Polym. Sci. Pol. Chem., 2007, 45: 1911.
[48] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 807.
[49] Xia Z W, Lin Z A, Xiao Y, Wang L, Zheng J N, Yang H H, Chen G N. Biosens. Bioelectron., 2013, 47: 120.
[50] Lin Z A, Sun L X, Liu W, Xia Z W, Yang H H, Chen G N. J. Mater. Chem. B, 2014, 2: 637.
[51] Li L, He X, Chen L, Zhang Y. Chem. Asian J., 2009, 4: 286.
[52] Bie Z J, Chen Y, Ye J, Wang S S, Liu Zhen. Angew. Chem. Int. Ed., 2015, DOI: 10.1002anie.201503066.
[53] Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M. Analyst, 2013, 138: 651.
[54] Liu Y, Gu Y, Li M, Wei Y. New J. Chem., 2014, 38: 6064.
[55] Kartal F, Denizli A. J. Sep. Sci., 2014, 37: 2077.
[56] Gao R, Mu X, Zhang J, Tang Y. J. Mater. Chem. B, 2014, 2: 783.
[57] Cao J L, Zhang X H, He X W, Chen L X,Zhang Y K. Chem. Asian J., 2014, 9: 526.
[58] Hua Z, Zhou S, Zhao M. Biosens. Bioelectron., 2009, 25: 615.
[59] Lin Z, Yang F, He X, Zhao X, Zhang Y. J. Chromatogr. A, 2009, 1216: 8612.
[60] Zhang W, He X W, Chen Y, Li W Y, Zhang Y K. Biosens. Bioelectron., 2011, 26: 2553.
[61] Zhang W, He X W, Chen Y, Li W Y, Zhang Y K. Biosens. Bioelectron., 2012, 31: 84.
[62] Zhang W, He X W, Li W Y, Zhang Y K. Chem. Commun., 2012, 48: 1757.
[63] Li D Y, He X W, Chen Y, Li W Y, Zhang Y K. ACS Appl. Mater. Interfaces, 2013, 5: 12609.
[64] Yang Y Q, He X W, Wang Y Z, Li W Y, Zhang Y K. Biosens. Bioelectron., 2014, 54: 266.
[65] Tan L, Kang C, Xu S, Tang Y. Biosens. Bioelectron., 2013, 48: 216.
[66] Zhang Z, Li J H, Wang X Y, Shen D Z, Chen L X. ACS Appl. Mater. Interfaces, 2015, 7: 9118.
[67] Zhang W, Liu W, Li P, Xiao H B, Wang H, Tang B. Angew. Chem. Int. Ed., 2014, 53: 12489.
[68] Li X, Zhang B, Li W, Lei X, Fan X, Tian L, Zhang H, Zhang Q. Biosens. Bioelectron., 2014, 51: 261.
[69] Li N, Qi L, Shen Y, Qiao J, Chen Y. ACS Appl. Mater. Interfaces, 2014, 6: 17289.
[70] Shiomi T, Matsui M, Mizukami F, Sakaguchi K. Biomaterials, 2005, 26: 5564.
[71] Bonini F, Piletsky S, Turner A P, Speghini A, Bossi A. Biosens. Bioelectron., 2007, 22: 2322.
[72] Tan C J, Chua H G, Ker K H, Tong Y W. Anal. Chem., 2008, 80: 683.
[73] Kan X, Zhao Q, Shao D, Geng Z, Wang Z, Zhu J J. J. Phys. Chem. B, 2010, 114: 3999.
[74] Gao F X, Ma X T, He X W, Li W Y, Zhang Y K. Colloid. Surface A, 2013, 433: 191.
[75] Zhang W, Qin L, He X W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 4560.
[76] Liu J, Yang K, Deng Q, Li Q, Zhang L, Liang Z, Zhang Y. Chem. Commun., 2011, 47: 3969.
[77] Guo M J, Zhao Z, Fan Y G, Wang C H, Shi L Q, Xia J J, Long Y, Mi H F. Biomaterials, 2006, 27: 4381.
[78] Long Y, Xing X, Han R, Sun Y, Wang Y, Zhao Z, Mi H. Anal. Biochem., 2008, 380: 268.
[79] Fu G, He H, Chai Z, Chen H, Kong J, Wang Y, Jiang Y. Anal. Chem., 2011, 83: 1431.
[80] Gai Q Q, Qu F, Zhang T, Zhang Y K. J. Chromatogr. A, 2011, 1218: 3489.
[81] 李永(Li Y), 杨黄浩(Yang H H), 庄峙厦(Zhuang Z X),王小如(Wang X R). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005, 26(9): 1634.
[82] Li Y, Yang H H, You Q H, Zhuang Z X, Wang X R. Anal. Chem., 2006, 78: 317.
[83] Ouyang R, Lei J, Ju H. Chem. Commun., 2008: 5761.
[84] Li Y X, Bin Q, Lin Z Y, Chen Y T, Yang H H, Chem. Commun., 2015, 51: 202.
[85] Pang X, Cheng G, Li R, Lu S, Zhang Y. Anal. Chim. Acta, 2005, 550: 13.
[86] Xia Y Q, Guo T Y, Song M D, Zhang B H, Zhang B L. Biomacromolecules, 2005, 6: 2601.
[87] Zhao K, Wei J, Cheng G, Yang C, Chen L. J. Appl. Polym. Sci., 2009, 113: 1133.
[88] Tan C J, Tong Y W. Langmuir, 2007, 23: 2722.
[89] Tan C J, Wangrangsimakul S, Bai R, Tong Y W. Chem. Mater., 2008, 20: 118.
[90] Ying X, Zhang F, Zhang L, Cheng G. J. Appl. Polym. Sci., 2010, 115: 3516.
[91] Pack D W, Arnold F H. Chem. Phys. Lipids, 1997, 86: 135.
[92] Yim H, Kent M S, Sasaki D Y, Polizzotti B D, Kiick K L, Majewski J, Satija S. Phys. Rev. Lett., 2006, 96: 198101.
[93] Britt D W, Möbius D, Hlady V. Phys. Chem. Chem. Phys., 2000, 2: 4594.
[94] Du X, Hlady V, Britt D. Biosens. Bioelectron., 2005, 20: 2053.
[95] Dhruv H, Pepalla R, Taveras M, Britt D W. Biotechnol. Prog., 2006, 22: 150.
[96] Turner N W, Wright B E, Hlady V, Britt D W. J. Colloid Interface Sci., 2007, 308: 71.
[97] Zheng H, Du X. J. Phys. Chem. B, 2009, 113: 11330.
[98] Zheng H, Du X. J. Phys. Chem. B, 2010, 114: 577.
[99] Zheng H, Du X. Biochim. Biophys. Acta, 2011, 1808: 2128.
[100] Zheng H, Du X. Biochim. Biophys. Acta, 2013, 1828: 792.
[101] Wang Y, Zhou Y, Sokolov J, Rigas B, Levon K, Rafailovich M. Biosens. Bioelectron., 2008, 24: 162.
[102] Zhang X, Du X, Huang X, Lv Z. J. Am. Chem. Soc., 2013, 135: 9248.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[9] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
阅读次数
全文


摘要

蛋白表面分子印迹技术