English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 111-120 DOI: 10.7536/PC150703 前一篇   后一篇

• 综述与评论 •

Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能

周宏伟1*, 丁小斌2   

  1. 1. 西安工业大学材料与化工学院 西安 710021;
    2. 中国科学院成都有机化学研究所 成都 610041
  • 收稿日期:2015-07-01 修回日期:2015-08-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 周宏伟 E-mail:xatuzhou@163.com
  • 基金资助:
    国家自然科学基金项目(No.51373175,21506167)、西安工业大学科研启动基金项目(No.0853-302020350)、陕西省自然科学基金项目(No.2014JM6239)和西安工业大学校长基金项目(No.XAGDXJJ1409)资助

Smart Polymer Materials Driven by the Belousov-Zhabotinsky Reaction:Topological Structures and Biomimetic Functions

Zhou Hongwei1*, Ding Xiaobin2   

  1. 1. School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China;
    2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2015-07-01 Revised:2015-08-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373175, 21506167), the Start-up Funding for Scientific Research in Xi'an Technological University (No. 0853-302020350), the Natural Science Foundation of Shaanxi province (No. 2014JM6239), and Principal's Foundation of Xi'an Technological University (No. XAGDXJJ1409).
化学自振荡反应驱动的智能高分子材料常被称为自振荡高分子材料(self-oscillating polymer materials, SOPMs),其中以Belousov-Zhabotinsky(BZ)反应驱动的SOPMs研究最为深入,为高分子材料领域的一大研究热点。与传统智能高分子材料不同,SOPMs体系具有高度的自调节性,即可以不需要外界“开-关”转换的刺激就能自动、可逆、周期性地发生状态转变。本文结合SOPMs的最新研究结果,介绍该类材料在新型拓扑结构设计和仿生功能研究两个方面的新思想和新方法。在拓扑结构设计方面,主要介绍梳形自振荡高分子凝胶、“聚轮烷”互锁自振荡高分子凝胶、多级结构自振荡高分子凝胶、超级交联自振荡高分子凝胶、支化自振荡高分子、自振荡高分子刷以及嵌段自振荡高分子材料。在仿生功能研究方面,主要阐述自振荡高分子囊泡、人工细胞、自主肠状运动、趋光避光运动。最后,对SOPMs今后的发展作了展望。
Smart polymer materials driven by chemical oscillating reactions are often called self-oscillating polymer materials (SOPMs). Among these, SOPMs driven by the Belousov-Zhabotinsky (BZ) reaction are paid particular attention and have become one of the hot topics in the field of polymer materials. Different from the traditional smart polymers, SOPMs show highly self-regulated properties, namely autonomous, reversible and periodical state transition without any “ON-OFF” switching of external stimuli. In this review, we will introduce the new ideas and new methods regarding SOPMs. Two aspects of SOPMs, including topological structures and biomimetic functions, are particularly introduced. Topological structure design involves comb-like self-oscillating polymer gels, “polyrotaxane-interlocked” self-oscillating polymer gels, hierarchical self-oscillating polymer gels, hyper cross-linked self-oscillating polymer gels, branched self-oscillating polymers, self-oscillating polymer brushes and self-oscillating block copolymers. Biomimetic function investigation includes self-oscillating polymer vesicles, artificial cells, autonomous intestine-like motion, photophobic and phototropic motion. Finally, the future development of SOPMs is prospected.

Contents
1 Introduction
2 Topological structures of self-oscillating polymer materials
2.1 Comb-like self-oscillating polymer gels
2.2 “Polyrotaxane-interlocked” self-oscillating polymer gels
2.3 Hierarchical self-oscillating polymer gels
2.4 Hyper cross-linked self-oscillating polymer gels
2.5 Branched self-oscillating polymers
2.6 Self-oscillating polymer brushes
2.7 Self-oscillating block copolymers
3 Biomimetic functions of self-oscillating polymer materials
3.1 Self-oscillating polymer vesicles
3.2 Artificial cells
3.3 Autonomous intestine-like motion
3.4 Photophobic and phototropic motion
4 Outlook

中图分类号: 

()
[1] Yoshida R, Ichijo H, Hakuta T, Yamaguchi T. Macromol. Rapid Commun., 1995, 16: 305.
[2] Theato P, Sumerlin B S, O'Reilly R K, Epps T H. Chem. Soc. Rev., 2013, 42: 7055.
[3] Yoshida R. Adv. Mater., 2010, 22: 3463.
[4] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118: 5134.
[5] Yoshida R, Ueki T. NPG Asia Mater., 2014, 6: DOI 10.1038/am.2014.32.
[6] Field R J, Noyes R M, Koros E. J. Am. Chem. Soc., 1972, 94: 8649.
[7] Noyes R M, Field R J, Koros E. J. Am. Chem. Soc., 1972, 94: 1394.
[8] Field R J, Noyes R M. J. Am. Chem. Soc., 1974, 96: 2001.
[9] Noyes R M, Jwo J J. J. Am. Chem. Soc., 1975, 97: 5431.
[10] Petrov V, Gaspar V, Masere J, Showalter K. Nature, 1993, 361: 240.
[11] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1975, 97: 202.
[12] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1976, 98: 4345.
[13] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104: 45.
[14] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104: 42.
[15] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104: 38.
[16] Pesek O, Schreiberova L, Schreiber I. Phys. Chem. Chem. Phys., 2011, 13: 9849.
[17] Poros E, Horvath V, Kurin-Csorgei K, Epstein I R, Orban M. J. Am. Chem. Soc., 2011, 133: 7174.
[18] Jolley C C, Ode K L, Ueda H R. Cell Reports, 2012, 2: 938.
[19] Zhou H, Ding X, Zheng Z, Peng Y. Soft Matter, 2013, 9: 4956.
[20] Zhou H, Zheng Z, Wang Q, Xu G, Li J, Ding X. RSC Adv., 2015, 5: 13555.
[21] Yoshida R, Uesusuki Y. Biomacromolecules, 2005, 6: 2923.
[22] Arimura T, Mukai M. Chem. Commun., 2014, 50: 5861.
[23] 周宏伟(Zhou H W), 梁恩湘(Liang E X), 郑朝晖(Zheng Z H), 丁小斌(Ding X B), 彭宇行(Peng Y X).化学进展(Prog. Chem.), 2011, 23: 2368.
[24] Zhang Y, Zhou N, Akella S, Kuang Y, Kim D, Schwartz A, Bezpalko M, Foxman B M, Fraden S, Epstein I R, Xu D B. Angew. Chem. Int. Edit., 2013, 52: 11494.
[25] Dayal P, Kuksenok O, Balazs A C. Macromolecules, 2014, 47: 3231.
[26] Dayal P, Kuksenok O, Balazs A C. Proc. Nat. Acad. Sci. U.S.A., 2013, 110: 431.
[27] Yashin V V, Kuksenok O, Balazs A C. Prog. Polym. Sci., 2010, 35: 155.
[28] Wang P F, Zhou J X, Li M E, Xu F, Lu T J. Sci. China Technol. Sci., 2010, 53: 1862.
[29] Yashin V V, Balazs A C, Science, 2006, 314: 798.
[30] Kuksenok O, Balazs A C. Sci. Rep., 2015, 5: 9569.
[31] Kuksenok O, Deb D, Yong X, Balazs A C. Materials Today, 2014, 17: 486.
[32] Deb D, Kuksenok O, Dayal P, Balazs A C. Materials Horizons, 2014, 1: 125.
[33] Yashin V V, Levitan S P, Balazs A C. Sci. Rep., 2015, 5: 11577.
[34] Zhao F, Ding Y W, Lu Y J, Liu X X, Zhang G Z. J. Phys. Chem. B, 2009, 113: 6661.
[35] Pullela S R, Shen J Y, Marquez M, Cheng Z D. J. Polym. Sci. Polym. Phys., 2009, 47: 847.
[36] Suzuki D, Yoshida R. J. Phys. Chem. B, 2008, 112: 12618.
[37] Hara Y, Mayama H, Fujimoto K. J. Phys. Chem. B, 2014, 118: 6931.
[38] Hara Y, Mayama H, Yamaguchi Y, Fujimoto K. Chem. Lett., 2014, 43: 673.
[39] Zhang Y, Li N, Delgado J, Zhou N, Yoshida R, Fraden S, Epstein I R, Xu B. Soft Matter, 2012, 8: 3056.
[40] Masuda T, Terasaki A, Akimoto A M, Nagase K, Okano T, Yoshida R. RSC Adv., 2015, 5: 5781.
[41] Hara Y, Yoshida R. Langmuir, 2005, 21: 9773.
[42] Hara Y, Yoshida R. J. Phys. Chem. B, 2008, 112: 8427.
[43] Hara Y, Yoshida R. J. Chem. Phys., 2008, 128: 224904.
[44] Zhang Y, Zhou N, Li N, Sun M G, Kim D, Fraden S, Epstein I R, Xu B. J. Am. Chem. Soc., 2014, 136: 7341.
[45] Ueki T, Yoshida R. Phys. Chem. Chem. Phys., 2014, 16: 10388.
[46] Srichan S, Kayunkid N, Oswald L, Lotz B, Lutz J F. Macromolecules, 2014, 47: 1570.
[47] Mitsunaga R, Okeyoshi K, Yoshida R. Chem. Commun., 2013, 49: 4935.
[48] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782.
[49] Okumura Y, Ito K. Adv. Mater., 2001, 13: 485.
[50] Zhou H W, Wang Y R, Zheng Z H, Ding X B, Peng Y X. Chem. Commun., 2014, 50: 6372.
[51] Suzuki D, Kobayashi T, Yoshida R, Hirai T. Soft Matter, 2012, 8: 11447.
[52] Suzuki D, Taniguchi H, Yoshida R. J. Am. Chem. Soc., 2009, 131: 12058.
[53] Caminade A M, Yan D, Smith D K. Chem. Soc. Rev., 2015, 44: 3870.
[54] Chen H, Kong J. The Journal of Physical Chemistry B, 2014, 118: 3441.
[55] Kong J, Schmalz T, Motz G, Müller A H E. Macromolecules, 2011, 44: 1280.
[56] Ueno T, Bundo K, Akagi Y, Sakai T, Yoshida R. Soft Matter, 2010, 6: 6072.
[57] Whittell G R, Hager M D, Schubert U S, Manners I. Nat. Mater., 2011, 10: 176.
[58] Schubert U S, Eschbaumer C. Angew. Chem. Int. Ed., 2002, 41: 2893.
[59] Lohmeijer B G G, Schubert U S. Angew. Chem. Int. Ed., 2002, 41: 3825.
[60] Gohy J F, Lohmeijer B G G, Varshney S K, Decamps B, Leroy E, Boileau S, Schubert U S. Macromolecules, 2002, 35: 9748.
[61] Ueki T, Takasaki Y, Bundo K, Ueno T, Sakai T, Akagi Y, Yoshida R. Soft Matter, 2014, 10: 1349.
[62] Banquy X, Burdyńska J, Lee D W, Matyjaszewski K, Israelachvili J. J. Am. Chem. Soc., 2014, 136: 6199.
[63] Yang W J, Neoh K G, Kang E T, Teo S L M, Rittschof D. Prog. Polym. Sci., 2014, 39: 1017.
[64] Chin H Y, Wang D, Schwartz D K. Macromolecules, 2015, 48: 4562.
[65] Pranantyo D, Xu L Q, Neoh K G, Kang E T, Ng Y X, Teo S L M. Biomacromolecules, 2015, 16: 723.
[66] Masuda T, Hidaka M, Murase Y, Akimoto A M, Nagase K, Okano T, Yoshida R. Angew. Chem. Int. Edit., 2013, 52: 7468.
[67] Gonzato C, Semsarilar M, Jones E R, Li F, Krooshof G J P, Wyman P, Mykhaylyk O O, Tuinier R, Armes S P. J. Am. Chem. Soc., 2014, 136: 11100.
[68] Warren N J, Armes S P. J. Am. Chem. Soc., 2014, 136: 10174.
[69] Ueki T, Shibayama M, Yoshida R. Chem. Commun., 2013, 49: 6947.
[70] Ueki T, Onoda M, Tamate R, Shibayama M, Yoshida R. Chaos, 2015, 25: 064605.
[71] Yoshida R. Current Organic Chemistry, 2005, 9: 1617.
[72] Yoshida R, Takei K, Yamaguchi T. Macromolecules, 2003, 36: 1759.
[73] Yoshida R. Biophysics, 2012, 8: 163.
[74] Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19: 3480.
[75] Takeoka Y R. Angew. Chem. Int. Edit., 2008, 47: 9039.
[76] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Edit., 2008, 47: 6690.
[77] Shinohara S, Seki T, Sakai T, Yoshida R, Takeoka Y. Chem. Commun., 2008, 4735.
[78] Takeoka Y, Watanabe M, Yoshida R. J. Am. Chem. Soc., 2003, 125: 13320.
[79] Hara Y, Saiki M, Suzuki T, Kikuchi K. Chem. Lett., 2014, 43: 938.
[80] Murase Y, Maeda S, Hashimoto S, Yoshida R. Langmuir, 2009, 25: 483.
[81] Nakata S, Yoshii M, Suzuki S, Yoshida R, Langmuir, 2014, 30: 517.
[82] Guo X, Szoka F C. Acc. Chem. Res., 2003, 36: 335.
[83] Jiang W, Zhou Y, Yan D. Chem. Soc. Rev., 2015, 44: 3874.
[84] Tamate R, Ueki T, Shibayama M, Yoshida R. Angew. Chem. Int. Edit., 2014, 53: 11248.
[85] Tamate R, Ueki T, Yoshida R. Adv. Mater., 2015, 27: 837.
[86] Shiraki Y, Yoshida R. Angew. Chem. Int. Edit., 2012, 51: 6112.
[87] Shiraki Y, Akimoto A M, Miyata T, Yoshida R. Chem. Mat., 2014, 26: 5441.
[88] Lu X J, Ren L, Gao Q Y, Zhao Y M, Wang S R, Yang J P, Epstein I R. Chem. Commun., 2013, 49: 7690.
[89] Yashin V V, Kuksenok O, Dayal P, Balazs A C. Rep. Prog. Phys., 2012, 75: 066601.
[90] Yashin V V, Balazs A C. Macromolecules, 2006, 39: 2024.
[91] Zhou H, Liang E, Ding X, Zheng Z, Peng Y. Chem. Commun., 2012, 48: 10553.
[92] Zhou H W, Liang E X, Pan Y, Ding X B, Zheng Z H, Peng Y X. RSC Adv., 2013, 3: 2182.
[93] Zhou H, Yang Y, Xu G, Chen W, Zhang W, Wang Q, Zheng Z, Ding X. J. Polym. Sci. Pol. Chem., 2015, 53: 2214.
[94] Hara Y, Yamaguchi Y, Mayama H. J. Phys. Chem. B, 2014, 118: 634.
[95] Kuksenok O, Dayal P, Bhattacharya A, Yashin V V, Deb D, Chen I C, van Vliet K J, Balazs A C. Chem. Soc. Rev., 2013, 42: 7257.
[96] Shiota T, Ikura Y S, Nakata S. J. Phys. Chem. B, 2013, 117: 2215.
[97] Smith M L, Slone C, Heitfeld K, Vaia R A. Adv. Funct. Mater., 2013, 23: 2835.
[98] Smith M L, Heitfeld K, Slone C, Vaia R A. Chem. Mater., 2012, 24: 3074.
[99] Buskohl P R, Kramb R C, Vaia R A. J. Phys. Chem. B, 2015, 119: 3595.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[3] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.
[4] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[5] 杜海燕, 雷霞, 许玉玉, 梁镇海, 王永洪. 聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为[J]. 化学进展, 2016, 28(11): 1648-1657.
[6] 李兴建, 王亚茹, 郑朝晖, 丁小斌, 彭宇行. 形状记忆高分子材料的网络结构化设计和性能研究[J]. 化学进展, 2013, 25(10): 1726-1738.
[7] 徐源鸿, 熊兴泉, 蔡雷, 唐忠科, 叶章基. 巯基-烯点击化学[J]. 化学进展, 2012, 24(0203): 385-394.
[8] 秦旺平, 梁国栋, 祝方明, 伍青. 金属有机配位聚合物的合成[J]. 化学进展, 2011, 23(12): 2534-2540.
[9] 周宏伟, 梁恩湘, 郑朝晖, 丁小斌, 彭宇行. 基于Belousov-Zhabotinsky自振荡反应的智能高分子[J]. 化学进展, 2011, 23(11): 2368-2376.
[10] 施信波 高海洋 伍青. 支化聚烯烃的合成研究*[J]. 化学进展, 2009, 21(12): 2651-2659.
[11] 吕维华,王荣民,何玉凤,张慧芳. 智能涂料制备方法探索与应用*[J]. 化学进展, 2008, 20(0203): 351-361.
[12] 戴亚妮,李平,王爱勤. 智能高分子材料在智能给药系统中的应用*[J]. 化学进展, 2007, 19(0203): 362-369.
[13] 赵秀丽,丁小斌,郑朝晖,彭宇行,田春蓉,王建华,龙新平. 纳米金粒子/高分子复合物[J]. 化学进展, 2005, 17(05): 847-853.
[14] 江龙. 以分子器件为背景的仿生功能膜[J]. 化学进展, 1994, 6(03): 195-.