English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1722-1731 DOI: 10.7536/PC150642 前一篇   后一篇

• 综述与评论 •

锂氧电池关键技术研究

蔡克迪1,2*, 赵雪1, 仝钰进2, 肖尧1, 高勇3, 王诚3   

  1. 1. 渤海大学 辽宁省超级电容器工程技术研究中心 锦州 121013;
    2. 德国马普学会 弗里茨哈勃研究所 柏林 14195;
    3. 清华大学 核能与新能源技术研究院 北京 100084
  • 收稿日期:2015-06-01 修回日期:2015-08-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 蔡克迪 E-mail:caikedihit@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21206083,21373002)资助

Investigation of Technology for Lithium-Oxygen Battery

Cai Kedi1,2*, Zhao Xue1, Tong Yujin2, Xiao Yao1, Gao Yong3, Wang Cheng3   

  1. 1. Liaoning Engineering Technology Research Center of Supercapacitor, Bohai University, Jinzhou 121013, China;
    2. Interfacial Molecular Spectroscopy Group, Fritz-Haber-Institut of the Max Planck Society, Berlin 14195, Germany;
    3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2015-06-01 Revised:2015-08-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21206083,21373002).
锂氧电池是一种用金属锂作负极,以氧气作为正极反应物的金属空气电池,由于其具备较高的理论比能量且环境友好等优势,近年来开始备受关注。本文主要概述了锂氧电池关键技术的最新研究进展,包括正极材料、催化剂、电解质、负极及电池结构等,并在此基础上对其未来发展趋势进行了展望,以期对其他金属空气电池的研究提供新思路和手段。
Lithium-oxygen battery is a metal-air battery using lithium as the negative electrode, oxygen in the air as the positive electrode reactant. Because it has high theoretical specific energy and environmentally friendly advantages, the lithium-oxygen battery has been studied in recent years. In this work, it shows the latest research progress of key technology for lithium-oxygen battery, including positive electrode materials, catalysts, electrolyte, negative electrode and structure of battery. And on this basis, we outlook its future development, providing new ideas and methods for the research of other metal-air battery.

Contents
1 Introduction
2 Working principle of lithium-oxygen battery
3 Positive electrode
3.1 Carbon material
3.2 Composite material
3.3 Non-carbon material
3.4 Coating
4 Catalyst of positive electrode
5 Electrolyte
6 Negative electrode
7 Conclusion and outlook

中图分类号: 

()
[1] Zhang T, Zhou H S. Angew. Chem. Int. Ed., 2012, 124(44): 11224.
[2] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Yang S H. Nat. Chem., 2011, 3: 546.
[3] Abraham K M, Jiang Z J. Electrochem. Soc.,1996,143(1): 1.
[4] Ogasawara T, Debart A, Holzapfel M, Bruce P G. J. Am. Chem. Soc., 2006, 128: 1390.
[5] Debart A, Paterson A J, Bao J L, Bruce P G. Angew. Chem. Int. Ed., 2008, 47: 4521.
[6] 张栋(Zhang D), 张存中(Zhang C Z), 穆道斌(Mu D B), 吴伯荣(Wu B R), 吴锋(Wu F).化学进展(Progress in Chemistry), 2012, 24(12): 2472.
[7] Gao Y, Wang C, Pu W H, Liu Z X, Deng C S, Zhang P, Mao Z Q. Int. J.Hydrogen Energy, 2012, 37(17): 12725.
[8] Xu J J, Xu D, Wang Z L, Wang H G, Zhang L L, Zhang X B. Angew. Chem. Int. Ed., 2013, 52(14): 3887.
[9] Zhang L L, Zhang X B, Wang Z L, Xu J J, Xu D, Wang L M. Chem.Commun., 2012, 48(61): 7598.
[10] Cai K D, Pu W H, Gao Y, Hou J B, Deng C S, Wang C, Mao Z Q. Int. J. Hydrogen Energy, 2013, 38(25): 11023.
[11] Cai K D, Jiang H J, Pu W H. Int. J. Electrochem. Soc., 2014, 9(1): 390.
[12] Lu Y, Gasteiger H A, Crumlin E,Jr R M,Shao-Horn Y. J. Electrochem. Soc., 2010, 159(9): A1016.
[13] Bryantsev V S, Blanco M, Faglioni F. J. Phys. Chem. A, 2010, 114(31): 8165.
[14] Christensen J, Albertus P, Sanchez-Carrera R S, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A. J. Electrochem. Soc., 2012, 159 (2): R1.
[15] Viswanathan V, Thygesen K S, Hummelshoj J S, Norskov J K, Girishkumar G, McCloskey B D, Luntz A C. J. Chem. Phys., 2011, 135 (21): 214704.
[16] Tran C, Yang X, Qu D. J. Power Sources, 2010, 195(7): 2057.
[17] Xiao, J, Wang D H, Xu W, Wang D Y, Williford R E, Liu J, Zhang J. J. Electrochem. Soc., 2010, 157(4): A487.
[18] Li Y L, Li X F, Geng D S, Tang Y J, Li Y Y, Dodelet J P, Michel L, Sun X L. Carbon, 2013, 64: 170.
[19] Ma S B, Lee D J, Roev V, Im D M, Doo S G. J. Power Sources, 2013, 244: 494.
[20] Song Y F, Wang X Y, Bai Y S, Wang H, Hu B A, Shu H B, Yang X K, Yi L H, Ju B W, Zhang X Y. T. Nonferr. Metal. Soc., 2013, 23(12): 3685.
[21] Cui Z H, Fan W G, Guo X X. J. Power Sources, 2013, 235: 251.
[22] Nie H J, Zhang Y N, Zhou W, Li J, Wu B S, Liu T, Zhang H M. Electrochim. Acta, 2014, 150: 205.
[23] Li J, Zhang Y N, Zhou W, Nie H J, Zhang H M. J. Power Sources, 2014, 262: 29.
[24] Cui Z H, Guo X X. J. Power Sources, 2014, 267: 20.
[25] Lin X J, Lu X, Huang T, Liu Z L, Yu A S. J. Power Sources, 2013, 242: 855.
[26] Lei Y, Lu J, Luo X Y, Wu T P, Du P, Zhang X Y, Ren Y, Wen J G, Miller D J, Miller J T, Sun Y K, Elam J W, Amine K. Nano Lett., 2013, 13(9): 4182.
[27] Riaz A, Jung K N, Chang W Y, Shin K H, Lee J W. ACS Appl. Mater.Interfaces, 2014, 6(20): 17815.
[28] Lee H, Kim Y J, Lee D J, Song J C, Lee Y M, Lim H T, Park J K. J. Mater. Chem. A, 2014, 2(30): 11891.
[29] Oh D Y, Qi J F, Han B H, Zhang G R, Garney T J, Ohmura J, Zhang Y, Yang S H, Belcher A M. Nano Lett., 2014, 14(8): 4837.
[30] Lin X J, Shang Y S, Huang T, Yu A S. Nanoscale, 2014, 6(15): 9043.
[31] Hung T F, Mohamed S G, Shen C C, Tsai Y Q, Chang W S, Liu R S. Nanoscale, 2013, 5(24): 12115.
[32] Shui J L, Wang H H, Liu D J. Electrochem. Commun., 2013, 34: 45.
[33] Riaz A, Jung K N, Chang W, Lee S B, Lim T H, Park S J, Song R H, Yoon S, Shin K H, Lee J W. Chem.Commun., 2013, 49(53): 5984.
[34] Wei Z H, Tan P, An L, Zhao T S. Appl. Energy, 2014, 130: 134.
[35] Cho S M, Lee J K, Yoon W Y. Electrochim. Acta, 2015. 158: 246.
[36] Zahoor A, Jang H S, Jeong J S, Christy M, Hwang Y J, Nahm K S. RSC Adv., 2014, 4(18): 8973.
[37] Zeng J, Francia C, Amici J, Bodoardo S, Penazzi N. J. Power Sources, 2014, 272: 1003.
[38] Bhattacharya P, Nasybulin E N, Engelhard M H, Kovarik L, Bowden M E, Li X S, Gaspar D J, Xu W, Zhang J G. Adv. Funct. Mater., 2014, 24(47): 7510.
[39] Li P F, Zhang J K, Yu Q L, Qiao J S, Wang Z H, Rooney D, Sun W, Sun K N. Electrochim. Acta, 2015, 165: 78.
[40] Yu L, Shen Y, Huang Y H. J.Alloys Compd., 2014, 595: 185.
[41] Cao Y, Cai S R, Fan S C, Hu W Q, Zheng M S, Dong Q F. Faraday Discuss., 2014, 172: 215.
[42] Jung K N, Riaz A, Lee S B, Lim T H, Park S J, Song R H, Yoon S, Shin K H, Lee J W. J. Power Sources, 2013, 244: 328.
[43] Lim S H, Kim D H, Byun J Y, Kim B K, Yoon W Y. Electrochim. Acta, 2013, 107: 681.
[44] Huang Z, Zhang M, Cheng J F, Gong Y P, Li X, Chi B, Pu J, Jian L. J. Alloys Compd., 2015, 626: 173.
[45] Ko B K, Kim M K, Kim S H, Lee M A, Shim S E, Baeck S H. J.Mol.Catal A:Chem., 2013, 379: 9.
[46] 黄洋(Huang Y), 罗仲宽(Luo Z K), 王芳(Wang F), 吴其兴(Wu Q X), 徐扬海(Xu Y H), 陈静(Chen J), 李豪君(Li H J).材料导报A(Materials Review),2015, 29(3): 8.
[47] Zheng H, Xiao D D, Li X, Liu Y L, Wu Y, Wang J P, Jiang K, Chen C, Gu L, Wei X L, Hu Y S, Chen Q, Li H. Nano Lett., 2014, 14(8): 4245.
[48] Visco S J, Nimon V Y, Petrov A, Pridatko K, Goncharenko N, Nimon E, Jonghe L D, Volfkovich Y M, Bograchev D A. J. Solid State Electrochem., 2014, 18(5): 1443.
[49] Zhang J Q, Sun B, Xie X Q, Kretschmer K, Wang G X. Electrochim. Acta, 2015. 36: 151.
[50] Lu Q, Gao Y G, Zhao Q, Li J, Wang X H, Wang F S. J. Power Sources, 2013, 242: 677.
[51] Cai K D, Pu W H, Gao Y, Hou J B, Deng C S, Wang C, Mao Z Q. Int. J. Hydrogen Energy, 2013, 38(25): 11023.
[52] Jung K N, Lee J I, Jung J H, Shin K H, Lee J W. Chem.Commun., 2014, 50(41): 5458.
[53] Lee D J, Lee H, Song J C, Ryou M H, Lee Y M, Kim H T, Park J K. Electrochem. Commun., 2014, 40: 45.
[54] Le H T, Kalubarme R S, Ngo D T, Jang S Y, Jung K N, Shin K H, Park C J. J. Power Sources, 2015, 274: 1188.
[55] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1(14): 2193.
[56] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[57] Zhang J, Xu W, Liu W. J. Power Sources, 2010, 195(21): 7438.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[4] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[7] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[8] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[9] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[10] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[11] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[12] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
阅读次数
全文


摘要

锂氧电池关键技术研究