English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1808-1814 DOI: 10.7536/PC150638 前一篇   后一篇

• 综述与评论 •

CO2化学吸收剂

方梦祥*, 周旭萍, 王涛, 骆仲泱   

  1. 浙江大学能源清洁利用国家重点实验室 杭州 310027
  • 收稿日期:2015-06-01 修回日期:2015-08-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 方梦祥 E-mail:mxfang@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51076139,51276161),国际合作项目(No.2013DFR60140)和浙江省自然科学基金项目(No.LY13E060004)资助

Solvent Development in CO2 Chemical Absorption

Fang Mengxiang*, Zhou Xuping, Wang Tao, Luo Zhongyang   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
  • Received:2015-06-01 Revised:2015-08-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51076139,51276161), the International Cooperative Project (No. 2013DFR60140), and the National Natural Science Foundation of Zhejiang Province (No. LY13E060004).
化学吸收法是燃后CO2捕集的主要方法之一,本文介绍了化学吸收法脱除CO2的系统工艺及特点,综述了CO2吸收剂的研究现状,介绍了典型吸收剂:氨水吸收剂、氨基酸盐吸收剂、碳酸钾吸收剂的研究进展,以及新型吸收剂研究方向:混合胺吸收剂、相变吸收剂、离子液体吸收剂、纳米流体吸收剂,CO2开关型吸收剂和新型有机胺吸收剂,并分析比较了各种吸收剂的优缺点。分析表明混合胺和相变吸收剂节能潜力较大,较其他四种新型吸收剂更为成熟,因此具有一定的工业化潜力。
Chemical absorption is one of the most mature method for post combustion CO2 capture. The current paper gives an overview of the development of solvent for CO2 capture. In addition to ammines, ammonia solutions, amino acid salts, potassium carbonate solutions are typical solvents which have been widely investigated. Many novel solvents have been proposed, for example blended amines, phase change solvents, ionic liquid, nanofluids based absorbent, switchable solvents and designer amines. The advantages and disadvantages of the solvents are introduced and among them blended amine solutions and phase change solvents are the most promising novel solvents which have great potential in decrease energy consumption.

Contents
1 Introduction
2 Technical analysis of CO2 chemical absorption
2.1 System process of CO2 chemical absorption
2.2 Characteristics of CO2 chemical absorption
3 Solvent development
3.1 Typical solvents
3.2 Novel solvents
4 Conclusion and outlook

中图分类号: 

()
[1] Jefferson M. Technological Forecasting and Social Change, 2015, 92: 362.
[2] Ma'Mun S, Svendsen H F, Hoff K A, Juliussen O. Energy Conversion and Management, 2007, 48(1): 251.
[3] BP Statistical Review of World Energy June 2014. England: BP Amoco, 2015.
[4] Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Chemical Engineering Research and Design, 2011, 89(9): 1609.
[5] Kenarsari S D, Yang D L, Jiang G D, Zhang S J, Wang J, Russell A G, Wei Q, Fan M H. RSC Advances, 2013, 3(45): 22739.
[6] 汪明喜(Wang M X). 浙江大学硕士论文(Master Dissertation of Zhejiang University), 2013.
[7] 郭东方(Guo D F), 王金意(Wang J Y),Gabriel Da Silva,郜时旺(Gao S W). 中国电机工程学报(Proceedings of CSEE), 2013,(32): 29.
[8] Jing G H, Zhou L J, Zhou Z M. Chem. Eng. J., 2012, 181/182: 85.
[9] Gouedard C, Picq D, Launay F, Carrette P L. International Journal of Greenhouse Gas Control, 2012, 10: 244.
[10] Huang Q Z, Bhatnagar S, Remias J E, Selegue J P, Liu K L. International Journal of Greenhouse Gas Control, 2013, 19: 243.
[11] Mazari S A, Ali B S, Jan B M, Saeed I M. International Journal of Greenhouse Gas Control, 2014, 31: 214.
[12] Chen X, Closmann F, Rochelle G T. Energy Procedia, 2011, 4: 101.
[13] Qin F, Wang S J, Kim I, Svendsen H F, Chen C H. International Journal of Greenhouse Gas Control, 2011, 5(3): 405.
[14] Porcheron F, Gibert A, Mougin P, Wender A. Environ. Sci. Technol., 2011, 45(6): 2486.
[15] Zhang Y, Chen C. Ind. Eng. Chem. Res., 2011, 50(1): 163.
[16] Samanta A, Bandyopadhyay S S. Chem. Eng. J., 2011, 171(3): 734.
[17] Pahlavanzadeh H, Nourani S, Saber M. J. Chem. Thermodyn., 2011, 43(12): 1775.
[18] Chen X, Rochelle G T. Chemical Engineering Research and Design, 2011, 89(9): 1693.
[19] Du Y, Li L, Namjoshi O, Voice A K, Fine N A, Rochelle G T. GHGT-11, 2013, 37: 1621.
[20] Yeh A C, Bai H. Sci. Total Environ., 1999, 228(2): 121.
[21] Bai H, Yeh A C. Industrial & Engineering Chemistry Research, 1997, 36: 2490.
[22] Zhang M K, Guo Y C. International Journal of Greenhouse Gas Control, 2013, 18: 114.
[23] Lim J, Kim D H, Yoon Y, Jeong S K, Park K T, Nam S C. Energy Fuel, 2012, 26(6): 3910.
[24] Ma'Mun S, Kim I. Energy Procedia, 2013, 37: 331.
[25] Ma'Mun S. Energy Procedia, 2014, 51: 191.
[26] Cullinane J T, Rochelle G T. Chem. Eng. Sci., 2004, 59(17): 3619.
[27] Oexmann J, Hensel C, Kather A. International Journal of Greenhouse Gas Control, 2008, 2(4): 539.
[28] Park S, Song H, Lee M, Park J. Korean J. Chem. Eng., 2014, 31(1): 125.
[29] Liu J Z, Wang S J, Zhao B, Tong H, Chen C H. Energy Procedia, 2009, 1(1): 933.
[30] Zhang M K, Guo Y C. International Journal of Greenhouse Gas Control, 2013, 16: 61.
[31] Qin F, Wang S J, Hartono A, Svendsen H F, Chen C H. International Journal of Greenhouse Gas Control, 2010, 4(5): 729.
[32] Yu H, Xiang Q, Fang M X, Yang Q Y, Feron P. Greenhouse Gases-Science and Technology, 2012, 2(3): 200.
[33] Darde V, Thomsen K, van Well W J M, Stenby E H. International Journal of Greenhouse Gas Control, 2010, 4(2): 131.
[34] Ma S C, Song H H, Wang M X, Yang J H, Zang B. Chemical Engineering Research and Design, 2013, 91(7): 1327.
[35] Li K K, Yu H, Tade M, Feron P. International Journal of Greenhouse Gas Control, 2014, 24: 54.
[36] Mani F, Peruzzini M, Barzagli F. ChemSusChem, 2008, 1(3): 228.
[37] Aronu U E, Hessen E T, Haug-Warberg T, Hoff K A, Svendsen H F. Chem. Eng. Sci., 2011, 66(10): 2191.
[38] Song H J, Park S, Kim H, Gaur A, Park J W, Lee S J. International Journal of Greenhouse Gas Control, 2012, 11: 64.
[39] Jockenhövel T, Schneider R. Energy Procedia, 2011, 4: 1451.
[40] Knuutila H, Aronu U E, Kvamsdal H M, Chikukwa A. Energy Procedia, 2011. 4: 1550.
[41] Holst J V, Versteeg G F, Brilman D W F, Hogendoorn J A. Chem. Eng. Sci., 2009, 64(1): 59.
[42] Rabensteiner M, Kinger G, Koller M, Gronald G, Unterberger S, Hochenauer C. International Journal of Greenhouse Gas Control, 2014, 29: 1.
[43] Kumar P S, Hogendoorn J A, Versteeg G F, Feron P H M. AIChE Journal, 2003, 49(1): 203.
[44] Majchrowicz M E, Brilman D W F W, Groeneveld M J. Energy Procedia, 2009, 1(1): 979.
[45] Aronu U E, Svendsen H F, Hoff K A, Juliussen O. Energy Procedia, 2009, 1(1): 1051.
[46] Erga O, Juliussen O, Lidal H. Energy Conversion Management, 1995, 36(6/9): 387.
[47] 申淑锋(Shen S F).河北科技大学学报(Journal of Hebei University of Science and Technology), 2013,(02): 142.
[48] Thee H, Suryaputradinata Y A, Mumford K A, Smith K H, Silva G D, Kentish S E, Stevens G W. Chem. Eng. J., 2012, 210: 271.
[49] Oexmann J, Hensel C, Kather A. International Journal of Greenhouse Gas Control, 2008, 2(4): 539.
[50] Thee H, Nicholas N J, Smith K H, Da Silva G, Kentish S E, Stevens G W. International Journal of Greenhouse Gas Control, 2014, 20: 212.
[51] Thee H, Smith K H, Da Silva G, Kentish S E, Stevens G W. Chem. Eng. J., 2012, 181/182: 694.
[52] Shen S F, Yang Y N, Ren S F. Fluid Phase Equilibr., 2014, 367: 38.
[53] Lu Y Q, Ye X H, Zhang Z H, Khodayari A, Djukadi T. Energy Procedia, 2011, 4: 1286.
[54] Horng S Y, Li M H. Ind. Eng. Chem. Res., 2002, 41(2): 257.
[55] Choi W J, Seo J B, Jang S Y, Jung J H, Oh K J. J. Environ. Sci., 2009, 21(7): 907.
[56] Kumar G, Mondal T K, Kundu M. J. Chem. Eng. Data, 2012, 57(3): 670.
[57] Conway W, Beyad Y, Richner G, Puxty G, Feron P. Chem. Eng. J., 2015, 264: 954.
[58] Freeman S A, Dugas R, Van Wagener D H, Nguyen T, Rochelle G T. International Journal of Greenhouse Gas Control, 2010, 4(2): 119.
[59] Li L, Voice A K, Li H, Namjoshi O, Nguyen T, Du Y, Rochelle G T. Energy Procedia, 2013, 37: 353.
[60] Li H, Li L, Nguyen T, Rochelle G T, Chen J. Energy Procedia, 2013, 37: 340.
[61] Conway W, Bruggink S, Beyad Y, Luo W, Melián-Cabrera I, Puxty G, Feron P. Chem. Eng. Sci., 2015, 126: 446.
[62] Svendsen H F, Hessen E T, Mejdell T. Chem. Eng. J., 2011, 171(3): 718.
[63] Raynal L, Alix P, Bouillon P, Gomez A, de Nailly M L F, Jacquin M, Kittel J, di Lella A, Mougin P, Trapy J. Energy Procedia, 2011, 4: 779.
[64] Zhang J, Qiao Y, Wang W, Misch R, Hussain K, Agar D W. Energy Procedia, 2013, 37: 1254.
[65] Xu Z, Wang S, Chen C. International Journal of Greenhouse Gas Control, 2013, 16: 107.
[66] Kim Y E, Park J H, Yun S H, Nam S C, Jeong S K, Yoon Y I. J. Ind. Eng. Chem., 2014, 20(4): 1486.
[67] Brennecke J F, Maginn E J, McCready M J, Murphy P, Schneider W F. 2013. http://www.arpa-.energy.gov/sites/default/files/documents/files/CO2_Workshop_NotreDame.pdf.
[68] Sanchez-Fernandez E, Mercader F D M, Misiak K, van der Ham L, Linders M, Goetheer E. Energy Procedia, 2013, 37: 1160.
[69] Aronu U E, Ciftja A F, Kim I, Hartono A. Energy Procedia, 2013, 37: 233.
[70] Patino J, Gutierrez M C, Carriazo D, Ania C O, Fierro J L G, Ferrer M L, Del Monte F. Journal of Materials Chemistry A, 2014, 2(23): 8719.
[71] Seddon K R. ACS Symposium Series, 2002, 819: 34.
[72] Endres F, Zein El Abedin S. Phys. Chem. Chem. Phys., 2006, 8(18): 2101.
[73] Paulechka Y U. J. Phys. Chem. Ref. Data, 2010, 39(3): 033108.
[74] E. Alpera B W W D. Chem. Eng. Sci., 1980, 35: 217.
[75] Kluytmans J H J, van Wachem B G M, Kuster B F M, Schouten J C. Chem. Eng. Sci., 2003, 58(20): 4719.
[76] Schumpe A, Saxena L A K. Chem. Eng. Sci., 1987, 42(7): 1787.
[77] Jiang J Z, Zhao B, Zhuo Y Q, Wang S J. International Journal of Greenhouse Gas Control, 2014, 29: 135.
[78] Wang T, Yu W, Fang M X. Greenhouse Gases: Science and Technology, 2015, 5(5): 682.
[79] Philip G. Jessop D J H X. Nature, 2005, 436(7054): 1102.
[80] 王九霞(Wang J X), 苏鑫(Su X), Jessop P G, 冯玉军(Feng Y J).化学进展(Progress in Chemistry), 2010, 22(11): 2099.
[81] Conway W, Yang Q, James S, Wei C, Bown M, Feron P, Puxty G. Energy Procedia, 2014, 63: 1827.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[5] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[6] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[7] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[8] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[9] 苏红, 韩业君. 亲电微生物及其催化的CO2固定和合成[J]. 化学进展, 2019, 31(2/3): 433-441.
[10] 郭爽, 陈志强, 任笑菲, 张永民*, 刘雪锋*. CO2响应型乳液体系[J]. 化学进展, 2017, 29(7): 695-705.
[11] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
[12] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[13] 姜宁, 邓志勇, 王公应, 刘绍英. 金属有机框架材料的制备及在吸附分离CO2中的应用[J]. 化学进展, 2014, 26(10): 1645-1654.
[14] 马雪璐, 雷鸣. 双核过渡金属络合物引发氮分子活化研究[J]. 化学进展, 2013, 25(08): 1325-1333.
[15] 王振, 于波*, 张文强, 陈靖, 徐景明. 高温共电解H2O/CO2制备清洁燃料[J]. 化学进展, 2013, 25(07): 1229-1236.
阅读次数
全文


摘要

CO2化学吸收剂