English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 91-102 DOI: 10.7536/PC150633 前一篇   后一篇

• 综述与评论 •

铁蛋白表面修饰及其应用

杨彩云1,2,3, 曹长乾1,2, 蔡垚1,2,3, 张同伟1,2, 潘永信1,2*   

  1. 1. 中法生物矿化与纳米结构联合实验室 中国科学院地质与地球物理研究所 北京 100029;
    2. 中国科学院地球与行星物理重点实验室 中国科学院地质与地球物理研究所 北京 100029;
    3. 中国科学院大学 北京 100049
  • 收稿日期:2015-06-01 修回日期:2015-09-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 潘永信 E-mail:yxpan@mail.iggcas.ac.cn
  • 基金资助:
    中科院/国家外国专家局创新团队国际合作伙伴计划项目(No.KZCX2-YW-T10),国家自然科学基金项目(No.41330104,41204053)和国家重大科研装备研制项目(No.ZDYZ2012-1-01-02)资助

The Surface Modification of Ferritin and Its Applications

Yang Caiyun1,2,3, Cao Changqian1,2, Cai Yao1,2,3, Zhang Tongwei1,2, Pan Yongxin1,2*   

  1. 1. France-China Bio-Mineralization and Nano-Structures Laboratory, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-06-01 Revised:2015-09-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (No. KZCX2-YW-T10), the National Natural Science Foundation of China (No. 41330104, 41204053), and the R&D of Key Instruments and Technologies for Deep Resources Prospecting (No. ZDYZ2012-1-01-02).
铁蛋白是一种广泛存在的储铁蛋白,具有纳米尺寸的水合氧化铁内核和笼形结构的蛋白质外壳。通过对铁蛋白壳的修饰或核的改造已成功构建出多功能肿瘤诊断和药物输送系统。近年来对铁蛋白的修饰研究主要集中在:(1)通过对铁蛋白内表面的修饰使铁蛋白壳内包裹上特定药物或者促进纳米材料的合成;(2)通过对铁蛋白外表面的修饰与PEG或抗体连接以扩展新的功能;(3)通过铁蛋白外表面或亚基间接触面的修饰控制铁蛋白的自组装。目前从铁蛋白修饰角度来阐明铁蛋白应用的研究较少。本文综述了近年来铁蛋白表面修饰的研究进展,介绍了铁蛋白表面化学修饰和生物修饰的方法,并进一步阐述了经修饰后铁蛋白纳米材料在生物医学、诊断学、纳米电子学等领域的应用。最后探讨了目前铁蛋白表面修饰研究方向及需解决的问题,提出了将铁蛋白生物修饰和化学修饰两种方法相结合是未来发展方向之一。本工作旨在为铁蛋白的进一步开发利用提供一些可能的思路。
Ferritin is a spherical protein composed of 24 subunits with an outer diameter of 12 nm and inner cavity diameter of 8 nm. The inner cavity can accommodate up to 4500 iron atoms as an iron mineral core (ferrihydrite in original). This special architecture of ferritin makes it an ideal nanoscale biotemplate. With the modification of the protein shell and the transformation of the inner mineral core, researchers have developed series of multifunctional cancer diagnostic agents and drug delivery systems against tumors. Recent studies of ferritin modification have focused on: (1) interior modification to make the nucleation of ferritin more efficient;(2) exterior modification by connecting PEG or antibody on the protein shell to develop ferritin new functions; (3) modification of interface between subunits to control the self-assemble of ferritin. This review summarizes the recent advances in the surface modifications of ferritin. We firstly review the two different modified methods, the chemical modification and the biological modification, then, discuss the diverse applications with modified ferritin in biomedicine, diagnostics and nano electronics, and the existing problems in the surface modifications of ferritin. We propose that a way to develop novel functionalized ferritin-based nano-materials is to combine the chemical and biological means.

Contents
1 Introduction
2 Structure of ferritin
3 The surface modification of ferritin and its applications
3.1 The surface modification of ferritin with chemical methods
3.2 Applications of chemically modified ferritin
3.3 The surface modification of ferritin with biological methods and its applications
4 Conclusion and outlook

中图分类号: 

()
[1] Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G. J. Phys. Chem. C, 2010, 114 (4): 1822.
[2] Lin C A J, Lee C H, Hsieh J T, Wang H T, Li J K, Shen J L, Chan W H, Yeh H I, Chang W H. J. Med. Biol. Eng., 2009, 29(6): 276.
[3] Bakunin V N, Suslov A Yu, Kuzmina G N, Parenago O P, Topchiev A V. J. Nanopart. Res., 2004, 6(2): 273.
[4] Dastjerdi R, Montazer M. Colloids Surf. B Biointerfaces, 2010, 79(1): 5.
[5] Laufberger V. Bull. Soc. Chim. Biol., 1937, 19: 1575.
[6] Crichton R R. Angew. Chem. Int. Ed., 1973, 12: 57.
[7] Jutz G, Rijn P, Miranda B, Böker A. Chem. Rev., 2015, 115: 1653.
[8] Yamashita I, Iwahoria K, Kumagai S. BBA-Gen. Subjects, 2010, 1800(8): 846.
[9] MaHam A, Tang Z, Wu H, Wang J, Lin Y. Small, 2009, 5(15): 1706.
[10] Cao C Q, Wang X X, Cai Y, Sun L, Tian L X, Wu H, He X Q, Lei H, Liu W F, Chen G J, Zhu R X, Pan Y X. Adv. Mater., 2014, 26(16): 2566.
[11] Harrison P M, Fischbach F A, Hoy T G, Haggis G H. Nature, 1967, 216: 1188.
[12] Harrison P M, Arosio P. BBA-Bioenergetics, 1996, 1275(3): 161.
[13] Fletcher J M, Harniman R L, Barnes F R, A. Boyle L, Collins A, Mantell J, Sharp T H, Antognozzi M, Booth P J, Linden N, Miles M J, Sessions R B, Verkade P, Woolfson D N. Science, 2013, 340: 595.
[14] Pierre T G St, Tran K C, Webb J, Macey D J, Heywood B R, Sparks N H, Wade V J, Manna S, Pootrakul P. Biometals, 1991, 4(3): 162.
[15] Domínguez-Vera J M, Fernández B, Gálvez N. Future Med. Chem., 2010, 2(4): 609.
[16] Stillman T J, Hempstead P D, Artymiuk P J, Andrews S C, Hudson A J, Treffry A, Guest J R, Harrison P M. J. Mol. Biol., 2001, 307(2): 587.
[17] Toussaint L, Bertrand L, Hue L, Crichton R R, Declercq J. J. Mol. Biol., 2007, 365(2): 440.
[18] Lawson D M, Artymiuk P J, Yewdall S J, Smith J M A, Livingstone J C, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, Thomas C D, Shaw W V, Harrison P M. Nature, 1991, 349: 541.
[19] Levi S, Salfeld J, Franceschinelli F, Cozzi A, Dorner M H, Arosio P. Biochemistry, 1989, 28: 5179.
[20] Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P. Biochem. J., 1996, 314: 139.
[21] Levi S, Salfeld J, Franceschinelli F, Cozzi A, Dorner M H, Arosio P. Biochemistry, 1989, 28(12): 5179.
[22] Hempstead P D, Yewdall S J, Fernie A R, Lawson D M, Artymiuk P J, Rice D W, Ford G C, Harrison P M. J. Mol. Biol., 1997, 268: 424.
[23] 曹长乾(Cao C Q), 田兰香(Tian L X), 蔡垚(Cai Y), 潘永信(Pan Y X). 生物医用磁性纳米材料与器件(Magnetic Nano-Materials and Devices for Biomedical Applications). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2013. 61.
[24] Meldrum F C, Heywood B R, Mann S. Science, 1992, 257: 522.
[25] Wong K K W, Douglas T, Gider S, Awschalom D D, Mann S. Chem. Mater., 1998, 10 (1): 279.
[26] Takeda S, Ohta M, Ebina S, Nagayama K. BBA-Gene. Struct. Expr., 1993, 1174(2): 218.
[27] Jaaskelainen A, Harinen R, Lamminmaki U, Korpimaki T, Pelliniemi L J, Soukka T. Small, 2007, 3(8): 1362.
[28] Santambrogio P, Cozzi A, Levi S, Rovida E, Magni F, Albertini A, Arosio P. Protein Expres. Purif., 2000, 19: 212.
[29] Uchida M, Terashima M, Cunningham C H, Suzuki Y, Willits D A, Willis A F, Yang P C, Tsao P S, McConnell M V, Young M J, Douglas T. Magnet. Reson. Med., 2008, 60(5): 1073.
[30] Cao C Q, Tian L X, Liu Q S, Liu W F, Chen G J, Pan Y X. J. Geophys. Res., 2010, 115: B07103.
[31] Fan K L, Cao C Q, Pan Y X, Lu D, Yang D, Feng J, Song L N, Liang M M, Yan X Y. Nat. Nanotechnol., 2012, 7: 459.
[32] Domínguez-Vera J M, Fernández B, Gálvez N. Future Med. Chem., 2010, 2(4): 609.
[33] Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T. BBA-Gen. Subjects, 2010, 1800(8): 834.
[34] Kramer R M, Li C, Carter D C, Stone M O, Naik R R. J. Am. Chem. Soc., 2004, 126 (41): 13282.
[35] Wetz K, Crichton R R. Eur. J. Biochem., 1976, 61: 545.
[36] Veronese F M. Biomaterials, 2001, 22(5): 405.
[37] Hermanson G T. Bioconjugate Techniques. 2nd ed. Elsevier Press, 2008. 211.
[38] Schoonen L, van Hest J C M. Nanoscale, 2014, 6: 7124.
[39] Zeng Q, Reuther R, Oxsher J, Wang Q. Bioorg. Chem., 2008, 36: 255.
[40] Brewer C F, Riehm J P. Anal. Biochem., 1967, 18(2): 248.
[41] Takeda S, Yamaki M, Ebina S, Nagayama K. J. Biochem., 1995, 117(2): 267.
[42] Kunkel G R, Mehrabian M, Martinson H G. Mol. Cell. Biochem., 1981, 34: 3.
[43] Hoare D G, Koshland D E. The American J. Biol. Chem., 1967, 242: 2447.
[44] Gilles M A, Hudson A Q, Borders C L. Anal. Biochem., 1990, 184(2): 244.
[45] Kishida Y, Olsen B R, Berg R A, Prockop D J. J. Cell. Biol., 1975, 64: 331.
[46] Grabarek Z, Gergely J. Anal. Biochem., 1990, 185(1): 131.
[47] Lee J M, Edwards H H L, Pereira C A, Samii S I. J. Mater. Sci. Mater. Med., 1996, 7(9): 531.
[48] Jang L, Keng H. Biomed. Microdevices., 2008, 10(2): 203.
[49] Staros J V. Biochemistry, 1982, 21 (17): 3950.
[50] Donovan J A, Jennings M L. Biochemistry, 1986, 25 (7): 1538.
[51] Anjaneyulu P S R, Staros J V. Int. J. Pept. Protein. Res., 1987, 30(1): 117.
[52] Greenberg C S, Birckbichler P J, Rice R H. FASEB J., 1991, 5: 3071.
[53] Fontana A, Spolaore B, Mero A, Veronese F M. Adv. Drug Deliv. Rev., 2008, 60: 13.
[54] Jutz G, Böker A. Polymer, 2011, 52: 211.
[55] Walsh E G, Mills D R, Lim S, Sana B, Brilliant K E, Park W K C. J. Nanopart. Res., 2013, 15: 1409.
[56] Hainfeld J F. P. Natl. Acad. Sci. U. S. A., 1992, 89: 11064.
[57] Tang Z, Wu H, Zhang Y, Li Z, Lin Y. Anal. Chem., 2011, 83: 8611.
[58] Fernández B, Gálvez N, Sánchez P, Morales J, Santoyo F, Cuesta R, Domínguez-Vera J M. Inorg. Chim. Acta, 2007, 360: 3951.
[59] Terashima M, Uchida M, Kosuge H, Tsao P S, Young M J, Conolly S M, Douglas T, McConnell M V. Biomaterials, 2011, 32(5): 1430.
[60] Lin X, Xie J, Zhu L, Lee S, Niu G, Ma Y, Kim K, Chen X Y. Angew. Chem. Int. Ed., 2011, 123: 1607.
[61] Fernndez B, Glvez N, Snchez P, Cuesta R, Bermejo R, Domínguez-Vera J M. J. Biol. Inorg. Chem., 2008, 13: 349.
[62] Denisov V N, Metelitsa D I. Biokhimiia, 1987, 52(8):1248.
[63] Mero A, Schiavon M, Veronese F M,Pasut G. J. Control. Release, 2011, 154: 27.
[64] Zalipsky S, Lee C. Poly(Ethylene Glycol) Chemistry. Springer, 1992. 347.
[65] Davis F F, Abuchowski A, Van E T. Enzyme Engineering. Springer, 1978. 4: 169.
[66] Harris J M, Martin N E, Modi M. Clin. Pharmacokinet. 2001, 40 (7): 539.
[67] Roberts M J, Bentley M D, Harris J M. Adv. Drug Deliv. Rev., 2002, 4(54): 459.
[68] Molineux G. Cancer Treat. Rev., 2002, 28: 13.
[69] Chapman A P, Antoniw P, Spitali M, West S, Stephens S, King D J. Nat. Biotechnol., 1999, 17: 780.
[70] Harris J M, Chess R B. Nat. Rev. Drug Discov., 2003, 2: 214.
[71] Woodburn K W, Holmes C P, Wilson S D, Fong K L, Press R J, Moriya Y, Tagawa Y. Xenobiotica, 2012, 42(7): 660.
[72] Vellard M. Curr. Opin. Biotechnol., 2003, 14(4): 444.
[73] Pepinsky R B, Walus L, Shao Z, Ji B, Gu S, Sun Y, Wen D, Lee X, Wang Q, Garber E, Mi S. Bioconjug. Chem., 2011, 22(2): 200.
[74] Alconcel S N S, Baas A S, Maynard H D. Polym. Chem.-UK, 2011, 2: 1442.
[75] Tsukamoto R, Muraoka M, Fukushige Y, Kawaguchi T, Nakatsuji Y, Yamashita I. Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 2006, 86.
[76] Tsukamoto R, Muraoka M, Fukushige Y, Nakagawa H, Kawaguchi T, Nakatsuji Y, Yamashita I. Bull. Chem. Soc. Jpn., 2008, 81(12): 1669.
[77] Vannucci L, Falvo E, Fornara M, Micco P D, Benada O, Krizan J, Svoboda J, Hulikova-Capkova K, Morea V, Boffi A, Ceci P. Int. J. Nanomedicine, 2012, 7: 1489.
[78] Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P. Nanoscale, 2013, 5: 12278.
[79] Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Mannelli L D C, Ghelardini C, Ferretti A M, Ponti A, Sangregorio C, Ceci P. ACS Nano, 2014, 8(5): 4705.
[80] Tsukamoto R, Godonoga M, Matsuyama R, Igarashi M, Heddle J G, Samukawa S, Yamashita I. Langmuir, 2013, 29: 12737.
[81] Tamura Y, Kaizu T, Kiba T, Igarashi M, Tsukamoto R, Higo A, Hu W, Thomas C, Fauzi M E, Hoshii T, Yamashita I, Okada Y, Murayama A, Samukawa S. Nanotechnology, 2013, 24: 285301.
[82] Matsumura S, Aoki I, Saga T, Shiba K. Mol. Pharm., 2011, 8: 1970.
[83] Sengonul M, Ruzicka J, Attygalle A B, Libera M. Polymer, 2007, 48: 3632.
[84] Sengonul M, Sousa A, Libera M. Colloids Surf. B: Biointerfaces, 2009, 73(1): 152.
[85] Wong K K W, Whilton N T, Cölfen H, Douglas T, Mann S. Chem. Commun., 1998, 1621.
[86] Wong K K W, Cölfen H, Whilton N T, Douglas T, Mann S. J. Inorg. Biochem., 1999, 76: 187.
[87] Zeng Q, Li T, Cash B, Li S, Xie F, Wang Q. Chem. Commun., 2007, 1453.
[88] Danon D, Goldstein L, Marikovsky Y, Skutelsky E. J. Ultrastruct. Res., 1972, 38: 500.
[89] Perriman A W, Mann S. ACS Nano, 2011, 5(8): 6085.
[90] Perriman A W, Cölfen H, Hughes R W, Barrie C L, Mann S. Angew. Chem. Int. Ed., 2009, 48(34): 6242.
[91] Mougin N C, Rijn P V, Park H, Müller A H E, Böker A. Adv. Funct. Mater., 2011, 21(13): 2470.
[92] Hu Y, Samanta D, Parelkar S S, Hong S W, Wang Q, Russell T P, Emrick T. Adv. Funct. Mater., 2010, 20: 3603.
[93] Rijn P V, Mougin N C, Franke D, Parka H, Böker A. Chem. Commun., 2011, 47: 8376.
[94] Kang Y J, Yang H J, Jeon S, Kang Y, Do Y, Hong S Y, Kang S. Macromol. Biosci., 2014, 14: 619.
[95] Kang Y J, Park D C, Shin H, Park J, Kang S. Biomacromolecules, 2012, 13: 4057.
[96] Iordanova B, Ahrens E T. Neuroimage, 2012, 59(2): 1004.
[97] Lee S, Lee K H, Ha J, Lee S, Kim T K. Angew. Chem. Int. Ed., 2011, 50(37): 8709.
[98] Kim S, Ahn K, Park J, Kim K R, Lee K E, Han S, Lee J. Anal. Chem., 2011, 83: 5834.
[99] Li K, Zhang Z, Luo M, Yu X, Han Y, Wei H, Cui Z, Zhang X. Nanoscale, 2012, 4: 188.
[100] Jääskeläinen A, Harinen R, Soukka T, Lamminmki U, Korpimki T, Virta M. Anal. Chem., 2008, 80 (3): 583.
[101] Kang H J, Kang Y J, Lee Y, Shin H, Chung S J, Kang S. Biomaterials, 2012, 33: 5423.
[102] Hwang M P, Lee J, Lee K E, Lee K H. Think Modular: ACS Nano, 2013, 7 (9): 8167.
[103] Uchida M, Flenniken M L, Allen M. J. Am. Chem. Soc., 2006, 128(51): 16626.
[104] Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, Fei B, Chen X, Xu B, Xie J. ACS Nano, 2013, 7 (8): 6988.
[105] Uchida M, Willits D A, Muller K, Willis A F, Jackiw L, Jutila M, Young M J, Porter A E, Douglas T. Adv. Mater., 2009, 21: 458.
[106] Normanno N, Luca A D, Bianco C, Strizzi L, Mancino M, Maiello M R, Carotenuto A, Feo G D, Caponigro F, Salomon D S. Gene, 2006, 366(1): 2.
[107] Li X, Qiu L, Zhu P, Tao X, Imanaka T, Zhao J, Huang Y, Tu Y, Cao X. Small, 2012, 8: 2505.
[108] Li C Q, Soistman E, Carter D C. Ind. Biot., 2006, 2(2): 143.
[109] Kanekiyo M, Wei C, Yassine H M, McTamney P M, Boyington J C, Whittle J R R, Rao S S, Kong W, Wang L, Nabel G J. Nature, 2013, 499(7456): 102.
[110] Han J, Kang Y J, Shin C, Ra J, Shin H, Hong S Y, Do Y, Kang S. Nanomedicine, 2014, 10: 561.
[111] Aime S, Frullano L, Crich S G. Angew. Chem. Int. Ed., 2002, 41(6): 1017.
[112] Kang S, Oltrogge L M, Broomell C C, Liepold L O, Prevelige P E, Young M, Douglas T. J. Am. Chem. Soc., 2008, 130: 16527.
[113] Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, Leapman R, Chen X. Nano Lett., 2011, 11: 814.
[114] Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. ACS Nano, 2013, 7(6): 4830.
[115] Yamashita I, Kirimura H, Okuda M, Nishio K, Sano K, Shiba K, Hayashi T, Hara M, Mishima Y. Small, 2006, 2(10): 1148.
[116] Matsui T, Matsukawa N, Iwahori K, Sano K, Shiba K, Yamashita I. Langmuir, 2007, 23 (4): 1615.
[117] Kumari S, Kulkarni A, Kumaraswamy G, Gupta S S. Chem. Mater., 2013, 25: 4813.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[10] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[11] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[12] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[13] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
阅读次数
全文


摘要

铁蛋白表面修饰及其应用