English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1764-1773 DOI: 10.7536/PC150621 前一篇   后一篇

• 综述与评论 •

受限空间下的烯烃聚合研究

王魁, 雷金化*, 聂赫然, 周光远*   

  1. 中国科学院长春应用化学研究所 生态高分子材料重点实验室 长春 130022
  • 收稿日期:2015-06-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 雷金化, 周光远 E-mail:jhlei@ciac.ac.cn;gyzhou@ciac.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51373163,21104073)资助

Olefin Polymerization in Confined Space

Wang Kui, Lei Jinhua*, Nie Heran, Zhou Guangyuan*   

  1. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2015-06-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373163,21104073).
近些年来,随着纳米技术的发展,出现了很多微纳米反应器,该反应器能够提供具有纳米尺寸的反应环境,使得在该环境下进行的反应受到纳米空间的影响,生成具有纳米效应或特殊结构的产物。在聚烯烃催化聚合中,也出现很多具有受限空间的微纳米反应器载体,这些载体不仅能够负载烯烃催化剂,还能为烯烃聚合反应提供受限空间环境。在纳米尺度效应的影响下,催化烯烃聚合进程发生变化,可以得到一些具有特殊结构与性能(比如高熔点、超高分子量、纤维状)的聚烯烃产物。本文总结现阶段受限空间下烯烃聚合研究的最新成果,主要根据聚合物的不同结构进行分类,分别介绍了受限空间对聚烯烃产物的形貌、反应动力学及活性、初级结构、二级结构和凝聚态结构及性能的影响,并对受限聚合研究的发展趋势进行了展望。
With the development of nanotechnology in recent years, there are many micro- and nano-reactors. The micro- and nano-reactor could provide a nano-sized reaction environment, so that reaction occurred in that environment is influenced by nano-confined space. Finally the resulting product with special structure is obtained. There are also many micro- and nano-reactor carriers with confined space for olefin polymerization. The carriers play a double role in the polymerization not only being the catalyst's carrier but also providing a confined geometry in which the polymerization reaction can occur. With the effect of nano scale the process of olefin polymerization changes, so that some polyolefin products with special structure and properties (such as high melting point, high molecular weight, and fibrous) will be obtained. In this paper, we mainly focus on recent research on olefin polymerization in confined space, and classify them according to different types of polymer structure, and then the influence of confined space on the morphology of the polyolefin product, the polymerization kinetic and activity, the primary structure of the product, the secondary structure of the product, the condensed matter structure and the property of the product are relatively introduced. Finally, the researches on olefin polymerization in confined space are also prospected.

Contents
1 Introduction
2 The effect of polymerization in confined space on the morphology of product
3 The effect of polymerization in confined space on the polymerization kinetic and activity
4 The effect of polymerization in confined space on the primary structure of the product
5 The effect of polymerization in confined space on the secondary structure of the product
6 The effect of polymerization in confined space on the condensed matter structure and the property of the product
7 Conclusion

中图分类号: 

()
[1] Wang N, Matsumoto T, Ueno M, Miyamura H, Kobayashi S. Angewandte Chemie, 2009, 121: 4838.
[2] Kobayashi J, Mori Y, Kobayashi S. Advanced Synthesis & Catalysis, 2005, 347: 1889.
[3] Miller P W, Long N J, de Mello A J, Vilar R, Audrain H, Bender D, Passchier J, Gee A. Angewandte Chemie International Edition, 2007, 46: 2875.
[4] Hisamoto H, Saito T, Tokeshi M, Hibara A, Kitamori T. Chemical Communications, 2001: 2662.
[5] Khlobystov A N. ACS nano, 2011, 5: 9306.
[6] Jahnisch K, Hessel V, Lowe H, Baerns M. Angewandte Chemie International Edition, 2004, 43: 406.
[7] Mason B P, Price K E, Steinbacher J L, Bogdan A R, McQuade D T. Chem. Rev., 2007, 107: 2300.
[8] Fletcher P D I, Haswell S J, Pombo-Villar E, Warrington B H, Watts P, Wong S Y F, Zhang X L. Tetrahedron, 2002, 58: 4735.
[9] Kolb G, Hessel V. Chem. Eng. J., 2004, 98: 1.
[10] Shi D, Hu G H, Li R K Y. Chem. Eng. Sci., 2006, 61: 3780.
[11] Kageyama K, Tamazawa J I, Aida T. Science, 1999, 285: 2113.
[12] Dong X, Wang L, Wang J, Zhou J, Sun T. The Journal of Physical Chemistry B, 2006, 110: 9100.
[13] Ye Z B, Zhu S P, Wang W J, Alsyouri H, Lin Y S. J. Polym. Sci. Pt. B-Polym. Phys., 2003, 41: 2433.
[14] Li D, Lei J, Wang H, Jiang M, Zhou G. Polymer bulletin, 2012, 68: 1565.
[15] Dong X, Wang L, Jiang G, Zhao Z, Sun T, Yu H, Wang W. Journal of Molecular Catalysis A: Chemical, 2005, 240: 239.
[16] Tudor J, O'Hare D. Chemical Communications., 1997: 603.
[17] Ye Z, Zhu S, Britten J F. Macromolecular Rapid Communications, 2006, 27: 1217.
[18] Covarrubias C, Quijada R. Catalysis Communications, 2009, 10: 995.
[19] Guo C, Zhang D, Wang F, Jin G X. Journal of Catalysis, 2005, 234: 356.
[20] Calleja G, Aguado J, Carrero A, Moreno J. Appl. Catal. A-Gen., 2007, 316: 22.
[21] Aguado J, Callej G, Carrero A, Moreno J. Chem. Eng. J., 2008, 137: 443.
[22] Silveira F, Petry C F, Pozebon D, Pergher S B, Detoni C, Stedile F C, dos Santos J H Z. Appl. Catal. A-Gen., 2007, 333: 96.
[23] Guo C, Jin G X, Wang F S. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42: 4830.
[24] Weckhuysen B M, Rao R R, Pelgrims J, Schoonheydt R A, Bodart P, Debras G, Collart O, van der Voort P, Vansant E F. Chem.-Eur. J., 2000, 6: 2960.
[25] Seddegi Z S, Budrthumal U, Al-Arfaj A A, Al-Amer A M, Barri S A I. Appl. Catal. A-Gen., 2002, 225: 167.
[26] Nair S, Naredi P, Kim S H. The Journal of Physical Chemistry B, 2005, 109: 12491.
[27] Lei J, Li D, Wang H, Wang Z, Zhou G. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49: 1503.
[28] Lei J, Li D, Wang H, Zhou G. Polymer, 2011, 52: 602.
[29] Tong X, Liu C, Cheng H M, Zhao H, Yang F, Zhang X. Journal of Applied Polymer Science, 2004, 92: 3697.
[30] Kaminsky W, Funck A, Klinke C. Topics in Catalysis, 2008, 48: 84.
[31] Park S, Choi I S. Advanced Materials, 2009, 21: 902.
[32] Choi K Y, Han J J, He B, Lee S B. Journal of the American Chemical Society, 2008, 130: 3920.
[33] Duran H, Steinhart M, Butt H J, Floudas G. Nano Letters, 2011, 11: 1671.
[34] Roscoe S B, Frechet J M J, Walzer J F, Dias A J. Science, 1998, 280: 270.
[35] Wang Y P, Cheng R L, Liang L L, Wang Y M. Compos. Sci. Technol., 2005, 65: 793.
[36] Kanagaraj S, Varanda F R, Zhil'tsova T V, Oliveira M S A, Simoes J A O. Compos. Sci. Technol., 2007, 67: 3071.
[37] Byrne M T, Gun'ko Y K. Advanced Materials, 2010, 22: 1672.
[38] Xu D H, Wang Z G. Polymer, 2008, 49: 330.
[39] Kodjie S L, Li L Y, Li B, Cai W W, Li C Y, Keating M. J. Macromol. Sci. Part B-Phys., 2006, 45: 231.
[40] Bikiaris D. Materials, 2010, 3: 2884.
[41] Laird E D, Li C Y. Macromolecules, 2013, 46: 2877.
[42] Hu Z, Liu C, Wu Y, Liu R, He Y, Luo S. Journal of Polymer Science Part B: Polymer Physics, 2011, 49: 812.
[43] Ahmadi E, Mohamadnia Z, Mashhadi-Malekzadeh A, Hamdi Z, Saghatchi F. Journal of Applied Polymer Science, 2013, 128: 4245.
[44] Xu L, Ye Z, Cui Q, Gu Z, Mercier L. Polymer, 2011, 52: 5961.
[45] Rossetto E, Nicola B P, de Souza R F, Bernardo-Gusmao K, Pergher S B C. Journal of Catalysis, 2015, 323: 45.
[46] Lee S Y, Kim S-K, Nguyen T M, Chung J S, Lee S B, Choi K Y. Macromolecules, 2011, 44: 1385.
[47] Sano T, Hagimoto H, Jin J, Oumi Y, Uozumi T, Soga K. Macromolecular Rapid Communications, 2000, 21: 1191.
[48] Paredes B, Grieken R V, Carrero A, Suarez I, Soares J B. Macromolecular Chemistry and Physics, 2011, 212: 1590.
[49] Kumkaew P, Wu L, Praserthdam P, Wanke S. Polymer, 2003, 44: 4791.
[50] Shao H Q, Zhou H, Guo X Y, Tao Y Q, Jiang T, Qin M G. Catalysis Communications, 2015, 60: 14.
[51] Ko Y S, Woo S I. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41: 2171.
[52] Uemura T, Yanai N, Kitagawa S. Chemical Society Reviews, 2009, 38: 1228.
[53] Liu B, Jie S Y, Bu Z Y, Li B G. J. Mol. Catal. A-Chem., 2014, 387: 63.
[54] Khezri K, Roghani-Mamaqani H, Sarsabili M, Sobani M, Mirshafiei-Langari S A. Polym. Sci. Ser. B, 2014, 56: 909.
[55] Park S, Yoon S W, Lee K B, Kim D J, Jung Y H, Do Y, Paik H j, Choi I S. Macromolecular Rapid Communications, 2006, 27: 47.
[56] Sano T, Oumi Y. Catalysis Surveys from Asia, 2004, 8: 295.
[57] Maiz J, Schäfer H, Trichy Rengarajan G, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M. Macromolecules, 2013, 46: 403.
[58] Maiz J, Martin J, Mijangos C. Langmuir, 2012, 28: 12296.
[59] Giussi J M, Blaszczyk-Lezak I, Susana Cortizo M, Mijangos C. Polymer, 2013, 54: 6886.
[60] Liu Z, Yu M, Wang J, Li F, Cheng L, Guo J, Huang Q, Zhou Y, Zhu B, Yi J, Liu Y, Yang W. Journal of Industrial and Engineering Chemistry, 2014, 20: 1804.
[61] Park H-J, Kim J, Seo Y, Shim J, Sung M-Y, Kwak S. Macromolecular Research, 2013, 21: 965.
[1] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[2] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[3] 袁世芳, 王丽静, 张秋月, 孙文华. 三齿配位钛配合物催化烯烃聚合[J]. 化学进展, 2017, 29(12): 1462-1470.
[4] 袁世芳, 牛春霞, 魏学红, 孙文华. ⅣB金属配合物催化烯烃聚合与共聚[J]. 化学进展, 2016, 28(7): 1070-1075.
[5] 梁清 官冰 江明. 两亲性杯芳烃的超分子自组装*[J]. 化学进展, 2010, 22(0203): 388-399.
[6] 李永涛 周广有 方方 陈国荣 桑革 孙大林. 孔性介质负载下的络合氢化物及其储氢特性*[J]. 化学进展, 2010, 22(01): 241-247.
[7] 王伟,郑刚. 单茂金属烯烃聚合催化剂*[J]. 化学进展, 2009, 21(04): 677-686.
[8] 郁楠,侯召民,席振峰. 阳离子型稀土金属有机化合物*[J]. 化学进展, 2008, 20(10): 1515-1524.
[9] 张阳,杨基础,于养信,李以圭. 分子模拟在超临界流体领域中的应用[J]. 化学进展, 2005, 17(06): 955-962.
[10] 陈立谊,杨海健,孙文华. 水相配位催化烯烃聚合的新进展*[J]. 化学进展, 2003, 15(05): 401-.
[11] 沈昊宇,金国新. 新型后过渡金属烯烃聚合催化剂--镍系烯烃聚合催化剂*[J]. 化学进展, 2003, 15(01): 60-.
[12] 王梅,何仁,钱明星. 多氮螯合配位后过渡金属络合物烯烃聚合催化剂[J]. 化学进展, 2001, 13(02): 102-.
[13] 封麟先,王立,张普玉. 茂金属/硼化合物烯烃聚合催化体系研究进展[J]. 化学进展, 2001, 13(02): 108-.
阅读次数
全文


摘要

受限空间下的烯烃聚合研究