English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1822-1832 DOI: 10.7536/PC150606 前一篇   后一篇

• 综述与评论 •

压力延迟渗透膜技术

虞源, 吴青芸*, 陈忠仁   

  1. 宁波大学 材料科学与化学工程学院高分子科学与工程学系 宁波市特种高分子材料制备与应用技术重点实验室 宁波 315211
  • 收稿日期:2015-06-01 修回日期:2015-06-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 吴青芸 E-mail:wuqingyun@nbu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51403107)、国家外专局“外专千人计划”项目(No.2013-211)、浙江省重点科技创新团队计划(No.2011R50001)、宁波市“3315”计划(A类)(No.2012S0001)、宁波市科技局/农业与社会发展攻关项目(No.2011A31002)和宁波大学王宽诚幸福基金资助

Pressure Retarded Osmosis Membrane Technology

Yu Yuan, Wu Qingyun*, Chen Zhongren   

  1. Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Key Laboratory of Specialty Polymers, Ningbo University, Ningbo 315211, China
  • Received:2015-06-01 Revised:2015-06-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51403107), the Global Recruitment Program of Foreign Experts (No. 2013-211), the Program for Zhejiang Leading S&T Innovation Team (No. 2011R50001), the Ningbo “3315” Program (Class A) for the Global Innovation Team of Novel Specialty Polymers (No. 2012S0001), the Ningbo S&T Program for Biomimetic Materials Technology and Application in Marine Disaster Prevention and Mitigation (No. 2011A31002), and K. C. Wong Magna Fund in Ningbo University.
压力延迟渗透膜技术是近年来备受瞩目的新型膜技术之一。它可与正渗透、反渗透等膜分离技术结合,从而在海水淡化、污水处理等领域具有广泛应用前景,而且其本身在有效获取盐差能等绿色海洋能源方面的应用潜力巨大。本文对压力延迟渗透原理、过程设计及其影响因素进行了系统总结,重点围绕压力延迟渗透膜的材料、类型、存在的问题和解决方案等最新研究进展进行详细分析和介绍,同时列举了压力延迟渗透膜技术在盐差能发电、水处理等领域的应用。
Pressure retarded osmosis (PRO) is one of the most promising membrane technologies, which has attracted much attention in recent years. PRO can be applied in desalination and waste water treatment when combined with forward osmosis or reverse osmosis process, and power generation from salinity gradients energy. This paper systematically summarizes the power generation mechanism, process design, and influencing factors of PRO processes. Then, it introduces PRO membrane materials, membrane types, existing problems and their corresponding solutions. Finally, we give several examples about PRO applications in power generation and water treatment.

Contents
1 Introduction
2 Pressure retarded osmosis process
2.1 Principle of PRO
2.2 PRO process design
2.3 Influencing factors of PRO process
3 Pressure retard osmosis membranes
3.1 Membrane type
3.2 Existing problems and their solutions
4 Applications
4.1 Power generation
4.2 Water treatment
5 Outlooks

中图分类号: 

()
[1] Ramon G Z, Feinberg B J, Hoek E M V. Energy Environ. Sci., 2011, 4(11): 4423.
[2] Logan B E, Elimelech M. Nature, 2012, 488(7411): 313.
[3] Yip N Y, Elimelech M. Environ. Sci. Technol., 2014, 48(18): 11002.
[4] Loeb S. Science, 1975, 189(4203): 654.
[5] Loeb S. J. Membr. Sci., 1976, 1(1): 49.
[6] Alsvik I, Hägg M-B. Polymers, 2013, 5(1): 303.
[7] Achilli A, Childress A E. Desalination, 2010, 261(3): 205.
[8] Klaysom C, Cath T Y, Depuydt T, Vankelecom I F J. Chem. Soc. Rev., 2013, 42(16): 6959.
[9] Loeb S. Desalination, 2001, 141(1): 85.
[10] Loeb S. Desalination, 1998, 120(3): 247.
[11] Han G, Ge Q, Chung T S. Appl. Energ, 2014, 132: 383.
[12] Altaee A, Sharif A, Zaragoza G, Hilal N. Desalination, 2014, 352: 118.
[13] Altaee A, Hilal N. Desalination, 2015, 355: 217.
[14] She Q, Jin X, Tang C Y. J. Membr. Sci., 2012, 401/402: 262.
[15] Touati K, Tadeo F, Schiestel T. Energy Procedia, 2014, 50: 960.
[16] Tang C Y, She Q, Lay W C L, Wang R, Fane A G. J. Membr. Sci., 2010, 354(1/2): 123.
[17] Mi B, Elimelech M. J. Membr. Sci., 2008, 320(1/2): 292.
[18] Zhao S, Zou L, Mulcahy D. J. Membr. Sci., 2011, 382(1/2): 308.
[19] Zou S, Gu Y, Xiao D, Tang C Y. J. Membr. Sci., 2011, 366(1/2): 356.
[20] Wang X, Huang Z M, Li L, Huang S S, Yu E H, Scott K. J. Technol. Inno. Renew. Energy, 2012, 1: 122.
[21] Zhao S, Zou L, Tang C Y, Mulcahy D. J. Membr. Sci., 2012, 396: 1.
[22] Altaee A, Sharif A. Desalination, 2015, 356: 31.
[23] Straub A P, Lin S, Elimelech M. Environ. Sci. Technol., 2014, 48(20): 12435.
[24] Kim Y C, Kim Y, Oh D, Lee K H. Environ. Sci. Technol., 2013, 47(6): 2966.
[25] Duan J, Litwiller E, Pinnau I. J. Membr. Sci., 2014, 470: 323.
[26] Su J, Zhang S, Chen H, Chen H, Jean Y C, Chung T S. J. Membr. Sci., 2010, 364(1/2): 344.
[27] Chung T-S, Zhang S, Wang K Y, Su J, Ling M M. Desalination, 2012, 287: 78.
[28] Altaee A, Zaragoza G, Sharif A. Desalination, 2014, 344: 108.
[29] Helfer F, Lemckert C, Anissimov Y G. J. Membr. Sci., 2014, 453: 337.
[30] Yip N Y, Tiraferri A, Phillip W A, Schiffman J D, Hoover L A, Kim Y C, Elimelech M. Environ. Sci. Technol., 2011, 45(10): 4360.
[31] Yip N Y, Elimelech M. Environ. Sci. Technol., 2013, 47(21): 12607.
[32] Hoover L A, Schiffman J D, Elimelech M. Desalination, 2013, 308(0): 73.
[33] Zhang S, Chung T S. Environ. Sci. Technol., 2013, 47(17): 10085.
[34] Arena J T, McCloskey B, Freeman B D, McCutcheon J R. J. Membr. Sci., 2011, 375(1/2): 55.
[35] Ingole P G, Choi W, Kim K H, Jo H D, Choi W K, Park J S, Lee H K. Desalination, 2014, 345: 136.
[36] Li X, Cai T, Chung T S. Environ. Sci. Technol., 2014, 48(16): 9898.
[37] Fu F J, Sun S P, Zhang S, Chung T S. J. Membr. Sci., 2014, 469: 488.
[38] Fu F J, Zhang S, Sun S P, Wang K Y, Chung T S. J. Membr. Sci., 2013, 443: 144.
[39] Han G, Zhang S, Li X, Chung T S. J. Membr. Sci., 2013, 440: 108.
[40] Li X, Zhang S, Fu F, Chung T S. J. Membr. Sci., 2013, 434: 204.
[41] Bui N N, McCutcheon J R. Environ. Sci. Technol., 2014, 48(7): 4129.
[42] Zhang S, Fu F, Chung T S. Chem. Eng. Sci., 2013, 87: 40.
[43] Song X X, Liu Z, Sun D D. Energy Environ. Sci., 2013, 6: 1199.
[44] Sun S P, Chung T S. Environ. Sci. Technol., 2013, 47(22): 13167.
[45] Kim Y C, Elimelech M. Environ. Sci. Technol., 2012, 46(8): 4673.
[46] Zhang S, Sukitpaneenit P, Chung T S. Chem. Eng. J., 2014, 241: 457.
[47] Chou S, Wang R, Fane A G. J. Membr. Sci., 2013, 448: 44.
[48] Cath T Y, Childress A E, Elimelech M. J. Membr. Sci., 2006, 281(1/2): 70.
[49] Yip N Y, Elimelech M. Environ. Sci. Technol., 2011, 45(23): 10273.
[50] Xu Y, Peng X, Tang C Y, Fu Q S, Nie S. J. Membr. Sci., 2010, 348(1/2): 298.
[51] Skilhagen S E, Aaberg D R J. Owemes, 2006, 20.
[52] Alsvik I L, Hägg M B. J. Membr. Sci., 2013, 428: 225.
[53] Banchik L D, Sharqawy M H, Lienhard V J H. J. Membr. Sci., 2014, 468: 81.
[54] Straub A P, Yip N Y, Elimelech M. Environ. Sci. Technol. Lett, 2013, 1(1): 55.
[55] Altaee A, Zaragoza G. Desalination, 2014, 343:2.
[56] Kim J, Lee J, Kim J H. Desalin. Water Treat., 2012, 43(1/3): 193.
[57] Kim Y C. Elimelech M. J. Membr. Sci., 2013, 429: 330.
[58] Altaee A, Hilal N. Desalination, 2014, 350: 79.
[59] He W, Wang Y, Sharif A, Shaheed M H. Desalination, 2014, 352: 27.
[60] Wan C F, Chung T S. J. Membr. Sci., 2015, 479: 148.
[61] Kim D I, Kim J, Shon H K, Hong S. J. Membr. Sci., 2015, 483: 34.
[62] Altaee A, Sharif A. Desalination, 2015, 356: 31.
[1] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[2] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[3] 宋海华,邬慧雄,马海洪. 燃料电池技术在电催化反应领域的应用[J]. 化学进展, 2004, 16(03): 400-.
阅读次数
全文


摘要

压力延迟渗透膜技术