English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1333-1342 DOI: 10.7536/PC150519 前一篇   后一篇

• 综述与评论 •

基于分子纳米粒子的巨型分子

张文彬1*, 王晓曼1, 王晓威1, 刘栋1, 韩帅元1, 程正迪2*   

  1. 1. 北京大学化学与分子工程学院 软物质科学与工程中心 高分子化学与物理教育部重点实验室 北京 100871;
    2. 美国阿克伦大学高分子科学与工程学院高分子科学系 俄亥俄 44325-3909
  • 收稿日期:2015-05-01 修回日期:2015-06-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 张文彬, 程正迪 E-mail:wenbin@pku.edu.cn;scheng@uakron.edu
  • 基金资助:
    国家自然科学基金项目(No.21474003,91427304),国家高技术研究发展计划(863)项目(No.2015AA020941),以及美国国家科学基金会项目(No.DMR-1409972,DMR-0906898)资助

Giant Molecules Based on Nano-Atoms

Zhang Wen-Bin1*, Wang Xiao-Man1, Wang Xiao-Wei1, Liu Dong1, Han Shuai-Yuan1, Cheng Stephen Z. D.2*   

  1. 1. Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2. Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
  • Received:2015-05-01 Revised:2015-06-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21474003, 91427304), the National High Technology Research and Development Program of China(No. 2015AA020941), and the National Science Foundation,United States (No. DMR-1409972,DMR-0906898).
本文聚焦于一类非传统的高分子结构,也即基于分子纳米粒子(或称纳米原子,nano-atoms)的巨型分子(giant molecules)。分子纳米粒子是具有确定化学组成、分子对称性和表面官能团的三维刚性笼状骨架结构。巨型分子是利用分子纳米粒子基元构筑的具有精确结构的高分子。受到蛋白质中结构域概念的启发,我们提出经过表面官能化修饰的分子纳米粒子可以作为合成高分子的结构域和功能域,通过逆功能分析,结合包括点击化学在内的高效化学反应,来实现巨型分子的快速模块化合成、可控组装和功能评估,并利用其中得到的构效关系,更为系统地理解材料的性质和指导材料的进一步优化设计。同时,这种新型高分子也可被看成是尺寸放大的小分子。它的许多有趣的自组装行为和相应小分子既有相似之处,又有截然不同之处。比如,巨型表面活性剂在溶液中能像小分子表面活性剂一样组装成为尾链被拉伸的胶束,在本体中则像嵌段聚合物一样形成纳米相分离的结构。这些组装展现出对于一级化学结构不同寻常的敏感性,并容易形成一些非传统的罕见相态,包括Frank-Kasper相态、在低分子量层状晶体PEO中出现的非整数折叠以及在溶液组装中出现的多级结构。因此,我们认为巨型分子作为功能材料在将来的技术领域中将具有广阔的应用前景。
This review focuses on a class of unconventional macromolecules-giant molecules based on nano-atoms. Nano-atoms are 3D molecular nanoparticles (MNPs) with rigid shapes, well-defined chemical structures, and specific symmetries. Giant molecules are precise macromolecules built from molecular nanoparticles. Inspired by the domain concept in proteins, we propose that MNPs can serve as the structural and functional domains for synthetic macromolecule, allowing one to design and synthesize materials with the desired function in a modular fashion via the retro-functional analysis. The structure-property relationship gained from this process will improve our understanding of these materials and guide the optimization of the materials property. Giant molecules can also be viewed as size-amplified small-molecule analogues, exhibiting similar but also distinct self-assembly behaviors from their counterparts. For example, giant surfactants behave like small-molecule surfactants in solution, forming micelles with stretched tails and versatile morphologies, but assemble into nano-phase-separated structures in bulk just like block copolymers. Their self-assembly exhibits unusual sensitivity to the primary chemical structures and the formation of unconventional hierarchical structures is not uncommon, including the Frank-Kasper phases, the non-integral folding in low molecular weight PEO lamellar crystals and various hierarchical structures in solution self-assembly. Therefore, we envision that giant molecules will be technically very important and receive numerous practical applications in the near future.

Contents
1 Introduction
2 Giant molecules: the domain concept
3 Retro-functional analysis: structural synthon and functional synthon
4 Giant molecules: precision synthesis
4.1 Click chemistry
4.2 Molecular nanoparticles
4.3 Sequential click chemistry
5 Giant molecules: controlled assembly
6 Conclusion and outlook

中图分类号: 

()
[1] Staudinger H. Ber. Dtsch. Chem. Ges., 1920, 53: 1073.
[2] Feynman R P. Eng. Sci., 1960, 23: 22.
[3] Horowitz N. Protein Sci., 1995, 4: 1017.
[4] Cesareni G. Modular Protein Domains. Weinheim: Wiley-VCH, 2005.
[5] Zhang W B, Yu X, Wang C L, Sun H J, Hsieh I F, Li Y, Dong X H, Yue K, van Horn R, Cheng S Z D. Macromolecules, 2014, 47: 1221.
[6] Kastner M A. Phys. Today, 1993, 46: 24.
[7] Tomalia D A, Christensen J B, Boas U. Dendrimers, Dendrons, and Dendritic Polymers: Discovery, Application, and the Future. Cambridge, UK: Cambridge University Press, 2012.
[8] Tomalia D A, Jensen A. Periodic Patterns, Relationships and Categories of Well-Defined Nanoscale Building Blocks. National Science Foundation Workshop Report, 2007.
[9] Roy X, Lee C H, Crowther A C, Schenck C L, Besara T, Lalancette R A, Siegrist T, Stephens P W, Brus L E, Kim P, Steigerwald M L, Nuckolls C. Science, 2013, 341: 157.
[10] Luo Z, Castleman A W. Acc. Chem. Res., 2014, 47: 2931.
[11] Nimmala P R, Knoppe S, Jupally V R, Delcamp J H, Aikens C M, Dass A. J. Phys. Chem. B, 2014, 118: 14157.
[12] Zhang W B, Cheng S Z D. Chin. J. Polym. Sci., 2015, 33: 797.
[13] Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A. Science, 2011, 334: 204.
[14] Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A. Nature, 2014, 505: 73.
[15] Nykypanchuk D, Maye M M, van der Lelie D, Gang O. Nature, 2008, 451: 549.
[16] Xiong H, Sfeir M Y, Gang O. Nano Lett., 2010, 10: 4456.
[17] Li Y, Liu Z, Yu G, Jiang W, Mao C. J. Am. Chem. Soc., 2015, 137: 4320.
[18] Dong Y, Sun Y, Wang L, Wang D, Zhou T, Yang Z, Chen Z, Wang Q, Fan Q, Liu D. Angew. Chem. Int. Ed., 2014, 53: 2607.
[19] Wang Y, Wang Y, Breed D R, Manoharan V N, Feng L, Hollingsworth A D, Weck M, Pine D J. Nature, 2012, 491: 51.
[20] Yu X, Zhong S, Li X, Tu Y, Yang S, van Horn R M, Ni C, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D. J. Am. Chem. Soc, 2010, 132: 16741.
[21] Yue K, Liu C, Guo K, Wu K, Dong X H, Liu H, Huang M, Wesdemiotis C, Cheng S Z D, Zhang W B. Polym. Chem., 2013, 4: 1056.
[22] Yu X, Yue K, Hsieh I F, Li Y, Dong X H, Liu C, Xin Y, Wang H F, Shi A C, Newkome G R, Ho R M, Chen E Q, Zhang W B, Cheng S Z D. Proc. Natl. Acad. Sci. USA, 2013, 110: 10078.
[23] Glotzer S C, Horsch M A, Iacovella C R, Zhang Z, Chan E R, Zhang X. Curr. Opin. Colloid Interface Sci., 2005, 10: 287.
[24] Liu H, Hsu C H, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang W B, Yue K, Cheng S Z D. J. Am. Chem. Soc., 2014, 136: 10691.
[25] Li Y, Zhang W B, Hsieh I F, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng S Z. J. Am. Chem. Soc., 2011, 133: 10712.
[26] Huang M, Hsu C H, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang W B, Yue K, Cheng S Z D. Science, 2015, 348: 424.
[27] Zhang W B. Soft Fullerene Materials: From Click Chemistry to Supramolecular Assemblies. Ph. D. Dissertation, University of Akron, 2010.
[28] Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristegui C, Mondain-Monval O. Nat. Mater., 2015, 14: 384.
[29] Corey E J. Pure Appl. Chem., 1967, 14: 19.
[30] Corey E J, Cheng X M. The Logic of Chemical Synthesis. New York: Wiley, 1989.
[31] Desiraju G R. Angew. Chem. Int. Ed., 1995, 34: 2311.
[32] Desiraju G R. J. Mol. Struct., 2003, 656: 5.
[33] Zimmer M. Chem. Rev., 2002, 102: 759.
[34] Lutz J F, Ouchi M, Liu D R, Sawamoto M. Science, 2013, 341: 1238149.
[35] Niu J, Hili R, Liu D R. Nat. Chem., 2013, 5: 282.
[36] Solleder S C, Meier M A. Angew. Chem. Int. Ed., 2014, 53: 711.
[37] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004.
[38] Barner-Kowollik C, Du Prez F E, Espeel P, Hawker C J, Junkers T, Schlaad H, van Camp W. Angew. Chem. Int. Ed., 2011, 50: 60.
[39] Zhang W B, Tu Y, Ranjan R, van Horn R M, Leng S, Wang J, Polce M, Wesdemiotis C, Quirk R P, Newkome G R, Cheng S Z D. Macromolecules, 2008, 41: 515.
[40] Zhang W B, Li Y, Li X, Dong X, Yu X, Wang C L, Wesdemiotis C, Quirk R P, Cheng S Z D. Macromolecules, 2011, 44: 2589.
[41] Yue K, Liu C, Guo K, Yu X, Huang M, Li Y, Wesdemiotis C, Cheng S Z D, Zhang W B. Macromolecules, 2012, 45: 8126.
[42] Sletten E M, Bertozzi C R. Angew. Chem. Int. Ed., 2009, 48: 6974.
[43] Zakeri B, Fierer J O, Celik E, Chittock E C, Schwarz-Linek U, Moy V T, Howarth M. Proc. Natl. Acad. Sci. USA, 2012, 109: E690.
[44] Zakeri B, Howarth M. J. Am. Chem. Soc, 2010, 132: 4526.
[45] Zhang W B, Sun F, Tirrell D A, Arnold F H. J. Am. Chem. Soc., 2013, 135: 13988.
[46] Sun F, Zhang W B, Mahdavi A, Arnold F H, Tirrell D A. Proc. Natl. Acad. Sci. USA, 2014, 111: 11269.
[47] Chen A Y, Deng Z, Billings A N, Seker U O, Lu M Y, Citorik R J, Zakeri B, Lu T K. Nat. Mater., 2014, 13: 515.
[48] Espeel P, Du Prez F E. Macromolecules, 2015, 48: 2.
[49] Liang G, Ren H, Rao J. Nat. Chem., 2010, 2: 54.
[50] Dong J, Krasnova L, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2014, 53: 9430.
[51] Ni B, Dong X H, Chen Z, Lin Z, Li Y, Huang M, Fu Q, Cheng S Z D, Zhang W B. Polym. Chem., 2014, 5: 3588.
[52] Feng X, Zhu S, Yue K, Su H, Guo K, Wesdemiotis C, Zhang W B, Cheng S Z D, Li Y. ACS Macro Lett., 2014, 3: 900.
[53] Yu X, Li Y, Dong X H, Yue K, Lin Z, Feng X, Huang M, Zhang W B, Cheng S Z D. J. Polym. Sci. Part B: Polym. Phys., 2014, 52: 1309.
[54] Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Hakkinen H, Zheng N. Nat. Commun., 2013, 4: 2422.
[55] AbdulHalim L G, Kothalawala N, Sinatra L, Dass A, Bakr O M. J. Am. Chem. Soc., 2014, 136: 15865.
[56] Gradisar H, Bozic S, Doles T, Vengust D, Hafner-Bratkovic I, Mertelj A, Webb B, Sali A, Klavzar S, Jerala R. Nat. Chem. Biol., 2013, 9: 362.
[57] Lai Y T, Cascio D, Yeates T O. Science, 2012, 336: 1129.
[58] King N P, Sheffler W, Sawaya M R, Vollmar B S, Sumida J P, Andre I, Gonen T, Yeates T O, Baker D. Science, 2012, 336: 1171.
[59] Hirsch A, Brettreich M. Fullerenes: Chemistry and Reactions. Weinheim, Great Britain: Wiley-VCH, 2005.
[60] Said M A, Roesky H W, Rennekamp C, Andruh M, Schmidt H G, Noltemeyer M. Angew. Chem. Int. Ed., 1999, 38: 661.
[61] Rebrov E A, Tebeneva N A, Mouzafarov A M, Ovchinnikov Y E, Struchkov Y T, Strelkova T V. Russ. Chem. Bull., 1995, 44: 1286.
[62] Li Y, Guo K, Su H, Li X, Feng X, Wang Z, Zhang W, Zhu S, Wesdemiotis C, Cheng S Z D, Zhang W B. Chem. Sci., 2014, 5: 1046.
[63] Hendan B J, Marsmann H C. J. Organomet. Chem., 1994, 483: 33.
[64] Su H, Zheng J, Wang Z, Lin F, Feng X, Dong X H, Becker M L, Cheng S Z D, Zhang W B, Li Y. ACS Macro Lett., 2013, 2: 645.
[65] Li Y, Wang Z, Zheng J, Su H, Lin F, Guo K, Feng X, Wesdemiotis C, Becker M L, Cheng S Z D, Zhang W B. ACS Macro Lett., 2013, 2: 1026.
[66] Li Y, Su H, Feng X, Wang Z, Guo K, Wesdemiotis C, Fu Q, Cheng S Z D, Zhang W B. Polym. Chem., 2014, 5: 6111.
[67] Li Y, Su H, Feng X, Yue K, Wang Z, Lin Z, Zhu X, Fu Q, Zhang Z, Cheng S Z D, Zhang W B. Polym. Chem., 2015, 6: 827.
[68] Sun H J, Tu Y, Wang C L, van Horn R M, Tsai C C, Graham M J, Sun B, Lotz B, Zhang W B, Cheng S Z D. J. Mater. Chem., 2011, 21: 14240.
[69] Lin M C, Hsu C H, Sun H J, Wang C L, Zhang W B, Li Y, Chen H L, Cheng S Z D. Polymer, 2014, 55: 4514.
[70] Yu X, Zhang W B, Yue K, Li X, Liu H, Xin Y, Wang C L, Wesdemiotis C, Cheng S Z. J. Am. Chem. Soc., 2012, 134: 7780.
[71] Lin Z, Lu P, Hsu C H, Yue K, Dong X H, Liu H, Guo K, Wesdemiotis C, Zhang W B, Yu X, Cheng S Z D. Chem. Eur. J., 2014, 20: 11630.
[72] Wu K, Huang M, Yue K, Liu C, Lin Z, Liu H, Zhang W, Hsu C H, Shi A C, Zhang W B, Cheng S Z D. Macromolecules, 2014, 47: 4622.
[73] Dong X H, van Horn R, Chen Z, Ni B, Yu X, Wurm A, Schick C, Lotz B, Zhang W B, Cheng S Z D. J. Phys. Chem. Lett., 2013, 4: 2356.
[74] Ni B, Huang M, Chen Z, Chen Y, Hsu C H, Li Y, Pochan D, Zhang W B, Cheng S Z, Dong X H. J. Am. Chem. Soc., 2015, 137: 1392.
[75] Materials Genome Initiative for Global Competitiveness. Washington D C: National Science and Technology Council, 2011.
[1] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[2] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[3] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
[4] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[9] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[10] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[11] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[12] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.
[13] 张浩, 许芳, 王合营, 姜涛, 马志. 基于聚亚甲基的新型共聚物的可控合成[J]. 化学进展, 2018, 30(2/3): 179-189.
[14] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[15] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
阅读次数
全文


摘要

基于分子纳米粒子的巨型分子