English
新闻公告
More
化学进展 2016, Vol. 28 Issue (1): 18-39 DOI: 10.7536/PC150501 前一篇   后一篇

• 综述与评论 •

基于石墨烯及其衍生物的信息存储:材料、器件和性能

孙赛1, 庄小东2, 汪露馨1, 汪诚1, 张斌1,3, 陈彧1*   

  1. 1. 华东理工大学化学与分子工程学院 教育部先进材料及其制备技术重点实验室 上海 200237;
    2. 上海交通大学化学化工学院 上海 200240;
    3. 新加坡国立大学化学与生物工程系 新加坡 119260
  • 收稿日期:2015-05-01 修回日期:2015-08-01 出版日期:2016-01-15 发布日期:2015-12-21
  • 通讯作者: 陈彧 E-mail:chentangyu@yahoo.com
  • 基金资助:
    国家自然科学基金项目(No.51333002,21404037)、教育部博士点基金(No.20120074110004)和中央高校基金(No.WJ1514311)资助

Graphene-Based Functional Materials for Information Storage: Materials, Devices and Performance

Sun Sai1, Zhuang Xiaodong2, Wang Luxin1, Wang Cheng1, Zhang Bin1,3, Chen Yu1*   

  1. 1. Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;
    2. College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
  • Received:2015-05-01 Revised:2015-08-01 Online:2016-01-15 Published:2015-12-21
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51333002, 21404037),the Research Fund for the Doctoral Program of Higher Education of China (No. 20120074110004), and the Fundamental Research Funds for the Central Universities (No. WJ1514311).
石墨烯以其独特的二维结构和高的热导电性、高杨氏模量、高电子/空穴迁移率、高抗拉强度、大的布鲁诺尔-埃米特-特勒表面积和量子霍尔效应等优异性能,备受科研工作者的关注,迅速成为材料、化学、物理和工程领域的热点研究课题。与富勒烯(C60、C70)的功能化一样,利用共价键合修饰或非共价键合修饰的方法可以在石墨烯表面或石墨烯体系中引入功能基团或功能组分,制备出种类繁多的具有特殊光、电、磁和生物效应的石墨烯衍生物。以石墨烯作为数据存储介质的分子级别计算已经引发了一场信息技术产业的革命,它能在更小的空间上,使用更少的能源来存储更多的数据信息, 有望成为目前基于硅半导体存储技术的潜在替代或补充技术。基于石墨烯的存储器件展现出优良的数据存储性能、器件稳定性和可靠性,为使这类器件具有更好的实际应用前景,人们采用许多技术手段来调控和优化器件性能。本文综述了近年来引起广泛关注的诸如石墨烯、共价修饰的石墨烯、石墨烯基复合材料、石墨烯/无机材料异质结等基于石墨烯及其衍生物的存储器件及相关材料研究进展,以及石墨烯/还原的氧化石墨烯透明电极在存储器件中的应用。探讨了该领域存在的亟待解决的关键基础问题和未来发展方向。
Two-dimensional graphene has been at the center of a significant research effort due to its high thermal conductivity, high Young's modulus, charge/hole mobility, fracture strength, specific Brunauer-Emmett-Teller surface area, and the quantum Hall effect. Similar to the functionalization of fullerenes, by using covalent or non-covalent modification methods, some organic functional groups, small molecules and polymers have been covalently grafted to the graphene surface or non-covalently doped into the graphene system to form a larger number of graphene derivatives designed for optoelectronics, photonics and biologies. Molecular computation using graphene as the data storage medium has ignited the revolution in information technology industries, making it possible to store more data in less space and with less energy. The data storage performance, stability and reliability of the graphene memories have advanced significantly towards practical information storage applications. A number of essential strategies can be employed to control and optimize the switching characteristics of graphene memories. In this comprehensive review, recent research progress on the graphene-based functional materials, including graphene, graphene oxide(GO), reduced graphene oxide (RGO), chemically modified GO/RGO, graphene/GO/RGO-based composites, and others, as active materials for information storage, has been systematically summarized and discussed. The key problems that need to be solved urgently in the materials design and device fabrication and the future development of this area have also been pointed out.

Contents
1 Introduction
2 Graphene-based information storage devices
2.1 Intrinsic graphene prepared by chemical vapor deposition (CVD)
2.2 Intrinsic graphene prepared by mechanical exfoliation
2.3 Graphene nanoribbons
2.4 Graphene oxide (GO)
2.5 Reduced graphene oxide (RGO)
2.6 Nitrogen-doped RGO (N-RGO)
3 Covalent modified GO/RGO-based information storage devices
3.1 Conjugated polymer-functionalized GO/RGO
3.2 Non-conjugated polymer-functionalized GO/RGO
3.3 Small molecule-functionalized GO/RGO
3.4 Metal nanoparticle-functionalized GO/RGO
4 Graphene/GO/RGO composites-based information storage devices
4.1 Polymer-graphene/GO/RGO composites
4.2 Small molecule-graphene/GO/RGO composites
4.3 Polymer-graphene quantum dot composites
5 Graphene(GO, RGO)/inorganics heterojunction-based information storage devices
5.1 Graphene/inorganics
5.2 GO(RGO)/inorganics
6 Graphene and RGO-based electrodes for information storage
6.1 Graphene electrodes
6.2 RGO electrodes
7 Summary and outlook

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[2] Wu J, Pisula W, Muellen K. Chem. Rev., 2007, 107: 718.
[3] Chen F, Tao N. J. Acc. Chem. Res., 2009, 42: 429.
[4] Dreyer D R, Ruoff R S, Bielawski C W. Angew. Chem. Int. Ed., 2010, 49: 9336.
[5] Chen Y, Zhang B, Liu G, Zhuang X D, Kang E T. Chem. Soc. Rev., 2012, 41: 4688.
[6] Ritter K A, Lyding J W. Nanotechnology, 2008, 19: 015704.
[7] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312: 1191.
[8] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313: 951.
[9] de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Commun., 2007, 143: 92.
[10] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7: 406.
[11] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457: 706.
[12] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J. Nano Lett., 2009, 9: 30.
[13] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339.
[14] Eda G, Fanchini G, Chhowalla M. Nat. Nanotechnol., 2008, 3: 270.
[15] Yang X, Dou X, Rouhanipour A, Zhi L, Raeder H J, Muellen K. J. Am. Chem. Soc., 2008, 130: 4216.
[16] Rouhanipour A, Roy M, Feng X, Raeder H J, Muellen K. Angew. Chem. Int. Ed., 2009, 48: 4602.
[17] Lu H, Lipatov A, Ryu S, Kim D J, Lee H, Zhuravlev M Y, Eom C B, Tsymbal E Y, Sinitskii A, Gruverman A. Nat. Commun., 2014, 5: 5518.
[18] Lai Y C, Hsu F C, Chen J Y, He J H, Chang T C, Hsieh Y P, Lin T Y, Yang Y J, Chen Y F. Adv. Mater., 2013, 25: 2733.
[19] Qian M, Pan Y M, Liu F Y, Wang M, Shen H L, He D W, Wang B G, Shi Y, Miao F, Wang X R. Adv. Mater., 2014, 26: 3275.
[20] Kim W H, Park C S, Son J Y. Carbon, 2014, 79: 388.
[21] Jeon H, Park J, Jang W, Kim H, Ahn S, Jeon K J, Seo H, Jeon H. Carbon, 2014, 75: 209.
[22] Lai Y C, Huang Y C, Lin T Y, Wang Y X, Chang C Y, Li Y X, Lin T Y, Ye B W, Hsieh Y P, Su W F, Yang Y J, Chen Y F. Npg Asia Materials, 2014, 6: e87.
[23] Yu W J, Chae S H, Lee S Y, Duong D L, Lee Y H. Adv. Mater., 2011, 23: 1889.
[24] Yao J, Lin J, Dai Y H, Ruan G D, Yan Z, Li L, Zhong L, Natelson D, Tour J M. Nat. Commun., 2012, 3: 1101.
[25] Park W I, Yoon J M, Park M, Lee J, Kim S K, Jeong J W, Kim K, Jeong H Y, Jeon S, No K S, Lee J Y, Jung Y S. Nano Lett., 2012, 12: 1235.
[26] Son J Y, Shin Y H, Kim H, Jang H M. ACS Nano, 2010, 4: 2655.
[27] Chakrabarti B, Roy T, Vogel E M. IEEE Electron Device Letters, 2014, 35: 750.
[28] Lai Y C, Wang Y X, Huang Y C, Lin T Y, Hsieh Y P, Yang Y J, Chen Y F. Adv. Funct. Mater., 2014, 24: 1430.
[29] Ji Y, Lee S, Cho B, Song S, Lee T. ACS Nano, 2011, 5: 5995.
[30] Yang P K, Chang W Y, Teng P Y, Jeng S F, Lin S J, Chiu P W, He J H. Proceedings of the IEEE, 2013, 101: 1732.
[31] Yang Y C, Lee J, Lee S, Liu C H, Zhong Z H, Lu W. Adv. Mater., 2014, 26: 3693.
[32] Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. Adv. Mater., 2009, 21: 1275.
[33] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4: 217.
[34] Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New Jersey: John Wiley & Sons, 2007. 832.
[35] Wegener H A R, Lincoln A J, Pao H C, O'Connell M R, Oleksiak R E, Lawrence H. The Variable Threshold Transistor, A New Electrically-Alterable, Non-Destructive Read-Only Storage Device (Eds. Wade G). New York: IEEE, 1968. 420.
[36] Kagan C R, Andry P. Thin-Film transistors. New York: Marcel Dekker, 2003. 32.
[37] Chen D, Tang L, Li J. Chem. Soc. Rev., 2010, 39: 3157.
[38] Huang X, Qi X Y, Boey F, Zhang H. Chem. Soc. Rev., 2012, 41: 666.
[39] Meng J L, Shi D X, Zhang G Y. Modern Physics Letters B, 2014, 28: 1430009.
[40] Dedkov Y S, Fonin M, Rudiger U, Laubschat C. Phys. Rev. Lett., 2008, 100: 107602.
[41] He C L, Shi Z W, Zhang L C, Yang W, Yang R, Shi D X, Zhang G Y. ACS Nano, 2012, 6: 4214.
[42] Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W, Choi W K. Nano Lett., 2010, 10: 2441.
[43] Son D I, Shim J H, Park D H, Jung J H, Lee J M, Park W, Kim T W, Choi W K. Nanotechnology, 2011, 22: 295203.
[44] Ji Y, Choe M, Cho B, Song S, Yoon J, Ko H C, Lee T. Nanotechnology, 2012, 23: 105202.
[45] Wu C X, Li F S, Guo T L. Appl. Phys. Lett., 2014, 104: 183105.
[46] Wu C X, Li F S, Guo T L, Kim T W. Organic Electronics, 2012, 13: 178.
[47] Li Y, Sinitskii A, Tour J M. Nat. Mater., 2008, 7: 966.
[48] Chung D S, Lee S M, Back J Y, Kwon S K, Kim Y H, Chang S T. ACS Appl. Mater. Interfaces, 2014, 6: 9524.
[49] Han S T, Zhou Y, Yang Q D, Zhou L, Huang L B, Yan Y, Lee C S, Roy V A L. ACS Nano, 2014, 8: 1923.
[50] Hong A J, Song E B, Yu H S, Allen M J, Kim J, Fowler J D, Wassei J K, Park Y, Wang Y, Zou J, Kaner R B, Weiller B H, Wang K L. ACS Nano, 2011, 5: 7812.
[51] Imam S A, Deshpande T, Guermoune A, Siaj M, Szkopek T. Appl. Phys. Lett., 2011, 99: 082109.
[52] Zhang C X, Zhang E X, Fleetwood D M, Alles M L, Schrimpf R D, Song E B, Kim S M, Galatsis K, Wang K L W. IEEE Transactions on Nuclear Science, 2012, 59: 2974.
[53] Jie W J, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H. J. Phys. Chem. C, 2013, 117: 13747.
[54] Song E B, Lian B, Kim S M, Lee S, Chung T K, Wang M S, Zeng C F, Xu G Y, Wong K, Zhou Y, Rasool H I, Seo D H, Chung H J, Heo J, Seo S, Wang K L. Appl. Phys. Lett., 2011, 99: 042109.
[55] Wang X M, Xie W G, Du J, Wang C L, Zhao N, Xu J B. Adv. Mater., 2012, 24: 2614.
[56] Wu C X, Li F S, Zhang Y G, Guo T L. Appl. Phys. Lett., 2012, 100: 042105.
[57] Kim Y D, Bae M H, Seo J T, Kim Y S, Kim H, Lee J H, Ahn J R, Lee S W, Chun S H, Park Y D. ACS Nano, 2013, 7: 5850.
[58] Kim S M, Song E B, Lee S, Zhu J F, Seo D H, Mecklenburg M, Seo S, Wang K L. ACS Nano, 2012, 6: 7879.
[59] Standley B, Bao W Z, Zhang H, Bruck J, Lau C N, Bockrath M. Nano Lett., 2008, 8: 3345.
[60] Wang H M, Wu Y H, Cong C X, Shang J Z, Yu T. ACS Nano, 2010, 4: 7221.
[61] Di Bartolomeo A, Giubileo F, Santandrea S, Romeo F, Citro R, Schroeder T, Lupina G. Nanotechnology, 2011, 22: 275702.
[62] Echtermeyer T J, Lemme M C, Baus M, Szafranek B N, Geim A K, Kurz H. IEEE Electron Device Letters, 2008, 29: 952.
[63] Zhang H, Bao W Z, Zhao Z, Huang J W, Standley B, Liu G, Wang F L, Kratz P, Jing L, Bockrath M, Lau C N. Nano Lett., 2012, 12: 1772.
[64] Gunlycke D, Areshkin D A, Li J W, Mintmire J W, White C T. Nano Lett., 2007, 7: 3608.
[65] Sinitskii A, Tour J M. ACS Nano, 2009, 3: 2760.
[66] Sinitskii A, Dimiev A, Kosynkin D V, Tour, J M. ACS Nano, 2010, 4: 5405.
[67] Jung I, Son J Y. Carbon, 2012, 50: 3854.
[68] Hong S K, Kim J E, Kim S O, Choi S Y, Cho B J. IEEE Electron Device Letters, 2010, 31: 1005.
[69] Liang J J, Chen Y S, Xu Y F, Liu Z B, Zhang L, Zhao X, Zhang X L, Tian J G, Huang Y, Ma Y F, Li F F. ACS Appl. Mater. Interfaces, 2010, 2: 3310.
[70] Hong S K, Kim J E, Kim S O, Cho B J. J. Appl. Phys., 2011, 110: 044506.
[71] Yi M D, Zhao L T, Fan Q L, Xia X H, Ai W, Xie L H, Liu X M, Shi N E, Wang W J, Wang Y P, Huang W J. Appl. Phys., 2011, 110: 063709.
[72] Wang L H, Yang W, Sun Q Q, Zhou P, Lu H L, Ding S J, Zhang D W. Appl. Phys. Lett., 2012, 100: 063509.
[73] Jilani S M, Gamot T D, Banerji P, Chakraborty S. Carbon, 2013, 64: 187.
[74] Kajen R S, Chandrasekhar N, Pey K L, Vijila C, Jaiswal M, Saravanan S, Ng A M H, Wong C P, Loh K P. ECS Solid State Letters, 2013, 2: M17.
[75] Khurana G, Misra P, Katiyar R S. J. Appl. Phys., 2013, 114: 124508.
[76] Nho H W, Kim J Y, Wang J, Shin H J, Choi S Y, Yoon T H. Journal of Synchrotron Radiation, 2014, 21: 170.
[77] He C L, Zhuge F, Zhou X F, Li M, Zhou G C, Liu Y W, Wang J Z, Chen B, Su W J, Liu Z P, Wu Y H, Cui P, Li R W. Appl. Phys. Lett., 2009, 95: 232101.
[78] Zhuge F, Hu B L, He C L, Zhou X F, Liu Z P, Li R W. Carbon, 2011, 49: 3796.
[79] Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S, Choi S Y. Nano Lett., 2010, 10: 4381.
[80] Kim T W, Gao Y, Acton O, Yip H L, Ma H, Chen H Z, Jen, A K Y. Appl. Phys. Lett., 2010, 97: 023310.
[81] Vasu K S, Sampath S, Sood A K. Solid State Commun., 2011, 151: 1084.
[82] Ho N T, Senthilkumar V, Kim Y S. Solid State Electron., 2014, 94: 61.
[83] Huang X, Zheng B, Liu Z D, Tan C L, Liu J Q, Chen B, Li H, Chen J Z, Zhang X, Fan Z X, Zhang W N, Guo Z, Huo F W, Yang Y H, Xie L H, Huang W, Zhang H. ACS Nano, 2014, 8: 8695.
[84] Rani A, Song J M, Lee M J, Lee J S. Appl. Phys. Lett., 2012, 101: 233308.
[85] Du Z Z, Li W, Ai W, Tai Q, Xie L H, Cao Y, Liu J Q, Yi M D, Ling H F, Li Z H, Huang W. RSC Adv., 2013, 3: 25788.
[86] Mishra A, Janardanan A, Khare M, Kalita H, Kottantharayil A. IEEE Electron Device Letters, 2013, 34: 1136.
[87] Kim C, Song J M, Lee J S, Lee M J. Nanotechnology, 2014, 25: 014016.
[88] Wang Z X, Eigler S, Halik M. Appl. Phys. Lett., 2014, 104: 243502.
[89] Seo S, Yoon Y, Lee J, Park Y, Lee H. ACS Nano, 2013, 7: 3607.
[90] Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Neoh K G, Zhang B, Zhu J H, Li Y X. Adv. Mater., 2010, 22: 1731.
[91] Zhang B, Liu Y L, Chen Y, Neoh K G, Li Y X, Zhu C X, Tok E S, Kang E T. Chem. Eur. J., 2011, 17: 10304.
[92] Zhang B, Chen Y, Ren Y J, Xu L Q, Liu G, Kang E T, Wang C, Zhu C X, Neoh K G. Chem. Eur. J., 2013, 19: 6265.
[93] Zhuang X D, Chen Y, Wang L X, Neoh K G, Kang E T, Wang C. Polym. Chem., 2014, 5: 2010.
[94] Wu C X, Li F S, Zhang Y A, Guo T L, Chen T. Appl. Phys. Lett., 2011, 99: 042108.
[95] Zhang B, Liu G, Chen Y, Zeng L J, Zhu C X, Neoh K G, Wang C, Kang E T. Chem. Eur. J. 2011, 17: 13646.
[96] Zhang B, Chen Y, Xu L Q, Zeng L J, He Y, Kang E T, Zhang J J. J. Polym. Sci. Part A: Pol. Chem., 2011, 49: 2043.
[97] Liu G, Zhuang X D, Chen Y, Zhang B, Zhu J H, Zhu C X, Neoh K G, Kang E T. Appl. Phys. Lett., 2009, 95: 253301.
[98] Li G L, Liu G, Li M, Wan D, Neoh K G, Kang E T. J. Phys. Chem. C, 2010, 114: 12742.
[99] Jin C, Lee J, Lee E, Hwang E, Lee H. Chem. Commun., 2012, 48: 4235.
[100] Bhunia P, Hwang E, Min M, Lee J, Seo S, Some S, Lee H. Chem. Commun., 2012, 48: 913.
[101] Cui P, Seo S, Lee J, Wang L, Lee E, Min M, Lee H. ACS Nano, 2011, 5(9): 6826.
[102] Lai Y C, Wang D Y, Huang I S, Chen Y T, Hsu Y H, Lin T Y, Meng H F, Chang T C, Yang Y J, Chen C C, Hsu F C, Chen Y F. J. Mater. Chem. C, 2013, 1: 552.
[103] Chou Y H, Chiu Y C, Chen W C. Chem. Commun., 2014, 50: 3217.
[104] Wu C X, Li F S, Guo T L. Vacuum, 2014, 101: 246.
[105] Zhang Q, Pan J, Yi X, Li L, Shang S M. Organic Electronics, 2012, 13: 1289.
[106] Mamo M A, Sustaita A O, Coville N J, Hummelgen I A. Organic Electronics, 2013, 14: 175.
[107] Velusamy D B, Hwang S K, Kim R H, Song G, Cho S H, Bae I, Park C. J. Mater. Chem., 2012, 22: 25183.
[108] Yu A D, Liu C L, Chen W C. Chem. Commun., 2012, 48: 383.
[109] Wang S A, Manga K K, Zhao M, Bao Q L, Loh K P. Small, 2011, 7: 2372.
[110] Hu B L, Qu R G, Chen C, Zhu G F, Zhu X J, Peng S S, Chen X X, Pan L, Wu Y Z, Zheng W G, Yan Q, Lu J, Li R W. J. Mater. Chem., 2012, 22: 16422.
[111] Kou L J, Li F S, Chen W, Guo T L. Organic Electronics, 2013, 14: 1447.
[112] Mihalache I, Radoi A, Munteanu C, Kusko M, Kusko C. Organic Electronics, 2014, 15: 216.
[113] Obreja A C, Cristea D, Mihalache I, Radoi A, Gavrila R, Comanescu F, Kusko C. Appl. Phys. Lett., 2014, 105: 083303.
[114] Bertolazzi S, Krasnozhon D, Kis A. ACS Nano, 2013, 7: 3246.
[115] Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J. Nat. Commun., 2013, 4: 1624.
[116] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A. Nat. Nanotechnol., 2013, 8: 826.
[117] Zhan N, Olmedo M, Wang G P, Liu J L. Appl. Phys. Lett., 2011, 99: 113112.
[118] Kwon S, Seo H, Lee H, Jeon K J, Park J Y. Appl. Phys. Lett., 2012, 100: 123101.
[119] Lee S, Song E B, Kim S M, Lee Y, Seo D H, Seo S, Wang K L. Appl. Phys. Lett., 2012, 101: 023109.
[120] Myung S, Park J, Lee H, Kim K S, Hong S. Adv. Mater., 2010, 22: 2045.
[121] Han S T, Zhou Y, Wang C D, He L F, Zhang W J, Roy V A L. Adv. Mater., 2013, 25: 872.
[122] Yin Z Y, Zeng Z Y, Liu J Q, He Q Y, Chen P, Zhang H. Small, 2013, 9: 727.
[123] Van't Erve O M J, Friedman A L, Cobas E, Li C H, Robinson J T, Jonker B T. Nat. Nanotechnol., 2012, 7: 737.
[124] Kim I, Siddik M, Shin J, Biju K P, Jung S, Hwang H. Appl. Phys. Lett., 2011, 99: 042101.
[125] Yin Z Y, Sun S Y, Salim T, Wu S X, Huang X A, He Q Y, Lam Y M, Zhang H. ACS Nano, 2010, 4: 5263.
[126] Liu J Q, Lin Z Q, Liu T J, Yin Z Y, Zhou X Z, Chen S F, Xie L H, Boey F, Zhang H, Huang W. Small, 2010, 6: 1536.
[127] Liu J Q, Yin Z Y, Cao X H, Zhao F, Lin A P, Xie L H, Fan Q L, Boey F, Zhang H, Huang W. ACS Nano, 2010, 4: 3987.
[128] Liu J Q, Zeng Z Y, Cao X H, Lu G, Wang L H, Fan Q L, Huang W, Zhang H. Small, 2012, 8: 3517.
[129] Tian H, Chen H Y, Ren T L, Li C, Xue Q T, Mohammad M A, Wu C, Yang Y, Wong H S P. Nano Lett., 2014, 14: 3214.
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[7] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[8] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[9] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[10] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[11] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[12] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[13] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[14] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[15] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.