English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1356-1373 DOI: 10.7536/PC150437 前一篇   后一篇

• 综述与评论 •

有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用

曾峰1,2, 潘真真1,2, 张梦1, 黄永焯1, 崔彦娜1*, 徐勤2*   

  1. 1. 中国科学院上海药物研究所 上海 201210;
    2. 广州中医药大学热带医学研究所 广州 510405
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 崔彦娜,徐勤 E-mail:yannacui_simm@163.com;xuqin@163.com
  • 基金资助:
    国家自然科学基金项目(No.81402885)和中国博士后科学基金面上项目(No.2014M551475)资助

Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor

Zeng Feng1,2, Pan Zhenzhen1,2, Zhang Meng1, Huang Yongzhuo1, Cui Yanna1*, Xu Qin2*   

  1. 1. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China;
    2. Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81402885) and the Chinese Postdoctoral Science Foundation (No.2014M551475).
有序介孔二氧化硅纳米粒由于具有独特的结构特征和物理化学性质,能够与磁性材料、荧光探针、抗肿瘤药物和特异性生物靶向分子等相结合,从而实现有序介孔二氧化硅纳米粒的多功能化,现已逐步应用于肿瘤的诊断和治疗等生物医学领域。本文就有序介孔二氧化硅纳米粒在制备、表面修饰及应用等几个方面的最新研究进展进行了综述。首先,重点介绍了不同pH条件下制备有序介孔二氧化硅纳米粒的方法和模板剂脱除方法,并简单归纳了各种方法的优缺点;其次,简要介绍了其表面稳定化和功能化修饰的研究现状,以及负载影像试剂和化疗药物的有序介孔二氧化硅纳米粒在肿瘤的多模成像诊断和靶向治疗中的应用进展;最后,总结了目前研究中还存在的问题并展望了其未来发展方向。
Ordered mesoporous silica nanoparticles (MSNs) have drawn a great deal of attention in the biomedical fields because of their specific structures and unique physical chemistry properties. Combined with various functional materials or molecules, such as magnetic nanoparticles, fluorescent probes, antineoplastic drugs and targeting ligands, ordered mesoporous silica nanoparticles can be developed into the multifunctional nanomedicines in the application of diagnosis and therapy of tumor. The recent progress on synthetic methods, surface modification and application of MSNs are reviewed. First of all, the methods of synthesis in different pH medium and template removal are summarized in detail along with a brief introduction on their merits and drawbacks. Secondly, surface modification methods are described, including surface stabilization and surface functionalization. Thirdly, the application progress of targeted therapy and imaging diagnosis of MSNs loaded with imaging agents or chemotherapy drugs are also concluded. The final part outlines the challenges and perspectives.

Contents
1 Introduction
2 Preparation of MSNs
2.1 Methods of preparation in alkaline medium
2.2 Methods of preparation in acid medium
2.3 Methods of preparation in neutral medium
2.4 Methods of preparation in acid-base medium
3 Methods of removing templates
3.1 High-temperature calcination
3.2 Extraction method
3.3 Microwave digestion method
3.4 Oxidation method
3.5 Other methods
4 Surface modification and functionalization
4.1 Surface modification for stabilization
4.2 Surface modification for specific targeting
5 Application in the tumor diagnosis and therapy
5.1 Tumor diagnosis
5.2 Tumor therapy
5.3 Tumor theranostics
6 Conclusion and Outlook

中图分类号: 

()
[1] Zhang T Y, Huang B, Wu H B, Wu J H, Li L M, Li Y X, Hu Y L, Han M, Shen Y Q, Tabata Y, Gao J Q. J. Controlled Release, 2015, 209: 260.
[2] Mérian J, De Souza R, Dou Y, Ekdawi S N, Ravenelle F, Allen C. Int. J. Pharm., 2015, 488: 154.
[3] Ren L, Chen S, Li H, Zhang Z, Ye C, Liu M, Zhou X. Nanoscale, 2015, 7: 12843.
[4] Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang X J, Rocchi P, Peng L. Proc. Natl. Acad. Sci. U. S. A., 2015, 112: 2978.
[5] Yan C, Gu J, Hou D, Jing H, Wang J, Guo Y, Katsumi H, Sakane T, Yamamoto A. Drug Dev. Ind. Pharm., 2014, 41: 617.
[6] Kang Y, Zhang X M, Zhang S, Ding L S, Li B J. Polymer Chemistry, 2015, 6:, 2098.
[7] Chen G, Wang L, Cordie T, Vokoun C, Eliceiri K W, Gong S. Biomaterials, 2015, 47: 41.
[8] Jeanbart L, Kourtis I, van der Vlies A, Swartz M A, Hubbell J A. Cancer Immunol. Immunother., 2015, 64: 1033.
[9] Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K. ACS Nano, 2015, 9: 5913.
[10] Yu S, Gao X, Baigude H, Hai X, Zhang R, Gao X, Shen B, Li Z, Tan Z, Su H. ACS Applied Materials & Interfaces, 2015, 7: 5089.
[11] Cai X, Jia X, Gao W, Zhang K, Ma M, Wang S, Zheng Y, Shi J, Chen H. Adv. Funct. Mater., 2015, 25: 2520.
[12] Choi G, Kwon O, Oh Y, Yun C O, Choy J H. Scienfitic Reports, 2015, 4: 4430.
[13] Rink J S, Plebanek M P, Tripathy S, Thaxton C S. Curr. Opin. Oncol., 2013, 25: 646.
[14] Van Rijt S H, Bölükbas D A, Argyo C, Datz S, Lindner M, Eickelberg O, Königshoff M, Bein T, Meiners S. ACS Nano, 2015, 9: 2377.
[15] Liu Y, Ding X W, Li J H, Luo Z, Hu Y, Liu J J, Dai L L, Zhou J, Hou C J, Cai K Y. Nanotechnology, 2015, 26: 145102.
[16] Chakravarty R, Goel S, Hong H, Chen F, Valdovinos H F, Hernandez R, Barnhart T E, Cai W. Nanomedicine (Lond), 2015, 10: 1233.
[17] Ngamcherdtrakul W, Morry J, Gu S, Castro D J, Goodyear S M, Sangvanich T, Reda M M, Lee R, Mihelic S A, Beckman B L, Hu Z, Gray J W, Yantasee W. Adv. Funct. Mater., 2015, 25: 2646.
[18] Chen Y, Wang X, Liu T, Zhang D S, Wang Y, Gu H, Di W. International Journal of Nanomedicine, 2015, 10: 2579.
[19] Shen J, Kim H C, Su H, Wang F, Wolfram J, Kirui D, Mai J, Mu C, Ji L N, Mao Z W, Shen H. Theranostics, 2014, 4: 487.
[20] Suteewong T, Ma K, Drews J, Werner-Zwanziger U, Zwanziger J, Wiesner U, Bradbury M. J. Sol-Gel Sci. Technol., 2015, 74: 32.
[21] Chan M H, Lin H M. Biomaterials, 2015, 46: 149.
[22] Ji H, Guan Y, Wu L, Ren J, Miyoshi D, Sugimoto N, Qu X. Chem. Commun., 2015, 51: 1479.
[23] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359: 710.
[24] Beck J, Vartuli J, Roth W, Leonowicz M, Kresge C, Schmitt K, Chu C, Olson D, Sheppard E. Journal of the American Chemical Society, 1992, 114: 10834.
[25] Wu S H, Mou C Y, Lin H P. Chem. Soc. Rev., 2013, 42: 3862.
[26] Miao C, Li D, Zhang Y, Yu J, Xu R. Micropor. Mesopor. Mater., 2014, 196: 46.
[27] Joshi P, Zhang P. Journal of Materials Science, 2015, 50: 3597.
[28] Li Z Y, Liu Y, Wang X Q, Liu L H, Hu J J, Luo G F, Chen W H, Rong L, Zhang X Z. ACS Applied Materials & Interfaces, 2013, 5: 7995.
[29] Xiao D, Jia H Z, Zhang J, Liu C W, Zhuo R X, Zhang X Z. Small, 2014, 10: 591.
[30] Lai S M, Lai H Y, Chou M Y. Micropor.Mesopor.Mater., 2014, 196: 31.
[31] Brevet D, Hocine O, Delalande A, Raehm L, Charnay C, Midoux P, Durand J O, Pichon C. Int. J. Pharm., 2014, 471: 197.
[32] Li Z Y, Hu J J, Xu Q, Chen S, Jia H Z, Sun Y X, Zhuo R X, Zhang X Z. Journal of Materials Chemistry B, 2015, 3: 39.
[33] Varache M, Bezverkhyy I, Saviot L, Bouyer F, Baras F, Bouyer F. J. Non-Cryst Solids, 2015, 408: 87.
[34] Quan G, Xin P, Wang Z, Wu Q, Ge L, Dian L, Bao C, Wu C. Journal of Nanobiotechnology, 2015, 13: 1.
[35] Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3: 3273.
[36] Chiang Y D, Lian H Y, Leo S Y, Wang S G, Yamauchi Y, Wu K C W. J. Phys. Chem. C, 2011, 115: 13158.
[37] Yang K N, Zhang C Q, Wang W, Wang P C, Zhou J P, Liang X J. Cancer Biology & Medicine, 2014, 11: 34.
[38] Möller K, Kobler J, Bein T. Advanced Functional Materials, 2007, 17: 605.
[39] Kobler J, Möller K, Bein T. ACS Nano, 2008, 2: 791.
[40] Kobler J, Bein T. ACS Nano, 2008, 2: 2324.
[41] Niedermayer S, Weiss V, Herrmann A, Schmidt A, Datz S, Muller K, Wagner E, Bein T, Brauchle C. Nanoscale, 2015, 7: 7953.
[42] Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J. J. Am. Chem. Soc., 2012, 134: 5722.
[43] Pan L, Liu J, He Q, Wang L, Shi J. Biomaterials, 2013, 34: 2719.
[44] Li X, He Q, Shi J. ACS Nano, 2014, 8: 1309.
[45] Kim T W, Chung P W, Lin V S Y. Chemistry of Materials, 2010, 22: 5093.
[46] Schumacher K, Grün M, Unger K. Micropor. Mesopor. Mater., 1999, 27: 201.
[47] Schumacher K, Ravikovitch P I, Du Chesne A, Neimark A V, Unger K K. Langmuir, 2000, 16: 4648.
[48] Lin Y S, Tsai C P, Huang H Y, Kuo C T, Hung Y, Huang D M, Chen Y C, Mou C Y. Chem. Mater., 2005, 17: 4570.
[49] Lu F, Wu S H, Hung Y, Mou C Y. Small, 2009, 5: 1408.
[50] Souris J S, Lee C H, Cheng S H, Chen C T, Yang C S, Ho J A, Mou C Y, Lo L W. Biomaterials, 2010, 31: 5564.
[51] Stöber W, Fink A, Bohn E. Journal of Colloid and Interface Science, 1968, 26: 62.
[52] Popat A, Hartono S B, Stahr F, Liu J, Qiao S Z, Lu G Q M. Nanoscale, 2011, 3: 2801.
[53] 岳聪峰(Yue C F).华南理工大学大学硕士论文(Master Dissertation of South China University of Technology), 2012.
[54] Ding Y, Yin G, Liao X, Huang Z, Chen X, Yao Y, Li J. Micropor. Mesopor. Mater., 2013, 170: 45.
[55] Thomas M, Slipper I, Walunj A, Jain A, Favretto M, Kallinteri P, Douroumis D. International Journal of Pharmaceutics, 2010, 387: 272.
[56] He Q, Shi J, Cui X, Zhao J, Chen Y, Zhou J. J. Mater. Chem., 2009, 19: 3395.
[57] Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. J. Am. Chem. Soc., 1998, 120: 6024.
[58] Han L, Ruan J, Li Y, Terasaki O, Che S. Chemistry of Materials, 2007, 19: 2860.
[59] Shen J, He Q, Gao Y, Shi J, Li Y. Nanoscale, 2011, 3: 4314.
[60] He Q, Cui X, Cui F, Guo L, Shi J. Micropor. Mesopor. Mater., 2009, 117: 609.
[61] Suzuki K, Ikari K, Imai H. J. Am. Chem. Soc., 2004, 126: 462.
[62] Li Z Y, Liu Y, Hu J J, Xu Q, Liu L H, Jia H Z, Chen W H, Lei Q, Rong L, Zhang X Z. ACS Applied Materials & Interfaces, 2014, 6: 14568.
[63] Sadasivan S, Fowler C E, Khushalani D, Mann S. Angew. Chem. Int. Ed., 2002, 41: 2151.
[64] Fowler C E, Khushalani D, Lebeau B, Mann S. Adv. Mater., 2001, 13: 649.
[65] Kapoor M P, Fujii W, Yanagi M, Kasama Y, Kimura T, Nanbu H, Juneja L R. Micropor. Mesopor. Mater., 2008, 116: 370.
[66] Wu S H, Hung Y, Mou C Y. Chem. Commun., 2011, 47: 9972.
[67] Shin H S, Hwang Y K, Huh S. ACS Applied Materials & Interfaces, 2014, 6: 1740.
[68] Zhu Y, Sundaram H S, Liu S, Lei Z, Xu X, Yu Q, Xu J, Jiang S. Biomacromolecules, 2014, 15: 1845.
[69] Zhang Q, Wang X, Li P Z, Nguyen K T, Wang X J, Luo Z, Zhang H, Tan N S, Zhao Y. Adv. Funct. Mater., 2014, 24: 2450.
[70] Zhao B, He M, Chen B, Hu B. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 107: 115.
[71] Tian B, Lui X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D. Chem. Commun., 2002, 11: 1186.
[72] Kecht J, Bein T. Micropor. Mesopor. Mater., 2008, 116: 123.
[73] Keene M J J, Denoyel R, Llewellyn P L. Chem.Commun., 1998, 20: 2203.
[74] Li Q, Amweg M L, Yee C K, Navrotsky A, Parikh A N. Micropor. Mesopor. Mater., 2005, 87: 45.
[75] Liu Y, Xu J, Jin L, Fang Y, Hu H. Asia-Pacific Journal of Chemical Engineering, 2009, 4: 666.
[76] Parikh A N, Navrotsky A, Li Q, Yee C K, Amweg M L, Corma A. Micropor. Mesopor. Mater., 2004, 76: 17.
[77] Lin H P, Mou C Y, Liu S B, Tang C Y, Lin C Y. Micropor. Mesopor. Mater., 2001, 44: 129.
[78] He J, Yang X, Evans D, Duan X. Materials Chemistry and Physics, 2003, 77: 270.
[79] Chen F, Hong H, Zhang Y, Valdovinos H F, Shi S, Kwon G S, Theuer C P, Barnhart T E, Cai W. ACS Nano, 2013, 7: 9027.
[80] Meng H, Xue M, Xia T, Ji Z, Tarn D Y, Zink J I, Nel A E. ACS Nano, 2011, 5: 4131.
[81] Kawi S. Chem. Commun., 1998, 1407.
[82] Kawi S, Lai M W. Chemtech, 1998, 28: 26.
[83] Gao F, Botella P, Corma A, Blesa J, Dong L. J. Phys. Chem. B, 2009, 113: 1796.
[84] Xiao L, Li J, Jin H, Xu R. Micropor. Mesopor. Mater., 2006, 96: 413.
[85] Cauda V, Argyo C, Piercey D G, Bein T. Journal of the American Chemical Society, 2011, 133: 6484.
[86] Zheng H, Gao C, Che S. Micropor. Mesopor. Mater., 2008, 116: 299.
[87] Rosenholm J M, Sahlgren C, Lindén M. Nanoscale, 2010, 2: 1870.
[88] Gong Z S, Duan L P, Tang A N. Microchimica Acta, 2015, 182: 1297.
[89] Oliveira R L, He W, Klein Gebbink R J M, de Jong K P. Catalysis Science & Technology, 2015, 5: 1919.
[90] Mackowiak S A, Schmidt A, Weiss V, Argyo C, von Schirnding C, Bein T, Bräuchle C. Nano Lett., 2013, 13: 2576.
[91] Ujiie H, Shimojima A, Kuroda K. Chem. Commun., 2015, 51: 3211.
[92] Hakeem A, Duan R, Zahid F, Dong C, Wang B, Hong F, Ou X, Jia Y, Lou X, Xia F. Chem. Commun., 2014, 50: 13268.
[93] Meng H, Liong M, Xia T, Li Z, Ji Z, Zink J I, Nel A E. ACS Nano, 2010, 4: 4539.
[94] Walcarius A, Etienne M, Lebeau B. Chemistry of Materials, 2003, 15: 2161.
[95] Kecht J, Schlossbauer A, Bein T. Chemistry of Materials, 2008, 20: 7207.
[96] 汤兑海(Tang D H).吉林大学博士论文(Doctoral Dissertation of Jilin University), 2012.
[97] Kim H, Kim S, Park C, Lee H, Park H J, Kim C. Advanced Materials, 2010, 22: 4280.
[98] De la Torre C, Casanova I, Acosta G, Coll C, Moreno M J, Albericio F, Aznar E, Mangues R, Royo M, Sancenón F, Martínez-Máñez R. Adv. Funct. Mater., 2015, 25: 687.
[99] Baeza A, Colilla M, Vallet-Regí M. Expert Opinion on Drug Delivery, 2015, 12: 319.
[100] Gayam S R, Wu S P. Journal of Materials Chemistry B, 2014, 2: 7009.
[101] Ngamcherdtrakul W, Morry J, Gu S, Castro D J, Goodyear S M, Sangvanich T, Reda M M, Lee R, Mihelic S A, Beckman B L, Hu Z, Gray J W, Yantasee W. Adv. Funct. Mater., 2015, 25: 2629.
[102] Teng X, Cheng S, Meng R, Zheng S, Yang L, Ma Q, Jiang W, He J. Journal of Nanoscience and Nanotechnology, 2015, 15: 3773.
[103] Rosenholm J M, Meinander A, Peuhu E, Niemi R, Eriksson J E, Sahlgren C, Lindén M. ACS Nano, 2008, 3: 197.
[104] He L, Huang Y, Zhu H, Pang G, Zheng W, Wong Y S, Chen T. Adv. Funct. Mater., 2014, 24: 2754.
[105] Dai L, Li J, Zhang B, Liu J, Luo Z, Cai K. Langmuir, 2014, 30: 7867.
[106] Li J, Liu F, Shao Q, Min Y, Costa M, Yeow E K L, Xing B. Advanced Healthcare Materials, 2014, 3.
[107] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2010, 132: 552.
[108] Santra S, Zhang P, Wang K, Tapec R, Tan W. Analytical Chemistry, 2001, 73: 4988.
[109] Xu X, Lü S, Gao C, Wang X, Bai X, Duan H, Gao N, Feng C, Liu M. Chem. Eng. J., 2015, 279: 851.
[110] Cheng Y J, Luo G F, Zhu J Y, Xu X D, Zeng X, Cheng D B, Li Y M, Wu Y, Zhang X Z, Zhuo R X, He F. ACS Applied Materials & Interfaces, 2015, 7: 9078.
[111] Wu L J, Wu M, Zeng Y Y, Zhang D, Zheng A X, Liu X L, Liu J F. Nanotechnology, 2015, 26: 025102.
[112] Martinez M, Baeza A, Rodriguez M A, García J, Vallet M. Journal of Materials Chemistry B, 2015, 3: 5746.
[113] Ma M, Zheng S, Chen H, Yao M, Zhang K, Jia X, Mou J, Xu H, Wu R, Shi J. Journal of Materials Chemistry B, 2014, 2: 5828.
[114] Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang C H, Nel A E. ACS Nano, 2015, 9: 3540.
[115] Cui Y, Dong H, Cai X, Wang D, Li Y. ACS Applied Materials & Interfaces, 2012, 4: 3177.
[116] Cui Y, Xu Q, Chow P K H, Wang D, Wang C H. Biomaterials, 2013, 34: 8511.
[117] Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L. ACS Nano, 2014, 8: 12310.
[118] Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z. ACS Nano, 2015, 9: 5223.
[119] Song X, Zhang R, Liang C, Chen Q, Gong H, Liu Z. Biomaterials, 2015, 57: 84.
[120] Fan W, Shen B, Bu W, Chen F, He Q, Zhao K, Zhang S, Zhou L, Peng W, Xiao Q, Ni D, Liu J, Shi J. Biomaterials, 2014, 35: 8992.
[1] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[2] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[3] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[4] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[5] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[6] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[7] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[8] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[9] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[10] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.
[11] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[12] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[13] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 范昭璇, 赵亮, 张学记. 循环肿瘤DNA的检测:从数字化到测序[J]. 化学进展, 2019, 31(10): 1384-1395.