English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1425-1434 DOI: 10.7536/PC150412 前一篇   后一篇

• 综述与评论 •

一维棒状烟草花叶病毒的自组装及其应用

刘朋1,2, 宁英男1, 周全2, 毛国梁1, 牛忠伟2*   

  1. 1. 东北石油大学化学化工学院 大庆 163318;
    2. 中国科学院理化技术研究所 北京 100190
  • 收稿日期:2015-04-01 修回日期:2015-05-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 牛忠伟 E-mail:niu@mail.ipc.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21474123)资助

One-Dimensional Rod-Like Tobacco Mosaic Virus: Self-Assembly and Applications

Liu Peng1,2, Ning Yingnan1, Zhou Quan2, Mao Guoliang1, Niu Zhongwei2*   

  1. 1. School of Chemistry and Chemical Engineering, Northeastern Petroleum University, Daqing 163318, China;
    2. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2015-04-01 Revised:2015-05-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21474123 ).
烟草花叶病毒(tobacco mosaic virus, TMV)是人类最早发现的一种植物病毒。由于其独特的一维棒状结构、在纳米尺度下的单分散特性、良好的生物相容性、易于基因修饰和化学修饰等特点,近年来,TMV在自组装以及制备生物纳米复合材料等领域受到越来越多的关注。本文主要对TMV的结构特点、在自组装领域的研究进展以及在制备生物纳米复合材料的研究现状进行详细介绍并展望了其发展前景。
Tobacco mosaic virus (TMV) is the first virus to be discovered. Due to its special one-dimensional structure, monodispersity in nanoscale, good biocompatibility, chemical and genetic modification, TMV has aroused great research interests in self-assembly and as a building block for construction of bio-nano composite materials. Here, the recent developments of TMV in the self-assembly and fabrication of biocomposite materials are summarized. Its future research and application are reviewed in the end.

Contents
1 Introduction
2 Structural feature of TMV
3 Self-assembly
3.1 Self-assembly of TMV coat proteins
3.2 Self-assembly of TMV in solution and at interfaces
3.3 Self-assembly of TMV on substrates
4 Chemical and genetic modification
5 Applications
5.1 Surface coating
5.2 Patterning
5.3 Application in sensing
5.4 Application in the biomedical field
6 Conclusion and outlook

中图分类号: 

()
[1] Klug A. Angew. Chem. Int. Ed., 1983, 22: 565.
[2] Durham A C H, Finch J T, Klug A. Nature, 1971, 229: 37.
[3] Klug A. Phil. Trans. R. Soc. Lond. B, 1999, 354: 531.
[4] Namba K, Pattanayek R, Stubbs G. J Mol. Biol., 1989, 208: 307.
[5] Kegel W K, Schoot P V. Biophys. J., 2006, 91: 1501.
[6] Lebeurier G, Nicolaieff A, Richards K E. Proc. Nat. Acad. Sci. U.S.A., 1977, 74: 149.
[7] Okada Y. Adv. Biophys., 1986, 22: 95.
[8] Miller R A, Presley A D, Francis M B. J. Am. Chem. Soc., 2007, 129: 3104.
[9] Bruckman M A, Soto C M, McDowell H, Liu J L, Ratna B R, Korpany K V, Zahr O R, Blum A S. ACS Nano, 2011, 3: 1606.
[10] Wu F C, Zhang H, Zhou Q, Wu M, Ballard Z, Tian Y, Wang J Y, Niu Z W, Huang Y. Chem. Commun., 2014, 50: 4007.
[11] Rego J M, Lee J H, Lee D H, Yi H. Biotechnol. J., 2013, 8: 237.
[12] Lin Y, Balizan E, Lee L A, Niu Z W, Wang Q. Angew. Chem. Int. Ed., 2010, 122: 880.
[13] Li T, Zan X J, Winans R E, Wang Q, Lee B. Angew. Chem. Int. Ed., 2013, 52: 6638.
[14] Liu Z, Niu Z W. Chinese. J. Polym. Sci., 2014, 10: 1271.
[15] Royston E, Ghosh A, Kofinas P, Harris T M, Culver J N. Langmuir, 2008, 24: 906.
[16] Shaw J G, Plasktt K A, Wilson T M A. Virology, 1986, 148: 326.
[17] Yi H, Nisar S, Lee S Y, Powers M A, Bentley W E, Payne G F, Ghodssi R, Rubloff G W, Harris M T, Culver J N. Nano Lett., 2005, 5: 1931.
[18] Yi H, Rubloff G W, Culver J N. Langmuir, 2007, 23: 2663.
[19] Mueller A, Eber F J, Azucena C, Petershans A, Bittner A M, Gliemann H, Jeske H, Wege C. ACS Nano, 2011, 5: 4512.
[20] Azucena C, Eber F J, Trouillet V, Hirtz M, Heissler S, Franzreb M, Fuchs H, Wege C, Gliemann H. Langmuir, 2012, 28: 14867.
[21] Eber F G, Eiben S, Jeske H, Wege C. Angew. Chem. Int. Ed., 2013, 125: 7344.
[22] Schlick T L, Ding Z, Kovacs E W, Francis M. J. Am. Chem. Soc.,2005,127: 3718.
[23] Bruckman M A, Steinmetz N F. Virus Hybrids as Nanomaterials Methods in Molecular Biology, 2013, 173.
[24] Dawson W O, Beck D L, Knorr D A, Grantham G L. Proc. Nat. Acad. Sci. U.S.A., 1986, 83: 1832.
[25] Culver J N, Dawson O W, Plonk K, Stubbs G. Virology, 1995, 206: 724.
[26] Culver J N. Annu. Rev. Phytopathol., 2002, 40: 287.
[27] Fan Z X, Gerasopoulos K, Siwak N P, Culver J, Ghodssi R. IEEE Sensors 2010 Conference, Waikoloa, Hilton, 2010.
[28] Niu Z W, Liu J, Lee L A, Bruckman M A, Zhao D G, Koley G, Wang Q. Nano Lett., 2007, 7: 3729.
[29] Knez M, Sumser M, Bittner A M, Wege C, Jeske H, Martin T P, Kern K. Adv. Funct. Mater., 2004, 14: 116.
[30] Dujardin E, Peet C, Stubbs G, Culver J N, Mann S. Nano Lett., 2003, 3: 413.
[31] Balci S, Bittner A M, Hahn K, Scheu C, Knez M, Kadri A, Wege C, Jeske H, Kern K. Electrochim. Acta, 2006, 51: 6251.
[32] Balci S, Hahn K, Kopold P, Kadri A, Wege C, Kern K, Bittner A M. Nanotechnology, 2012, 23: 045603.
[33] Liu K, Xing R, Chen C, Shen G, Yan L, Zou Q, Ma G, Möhwald H, Yan X. Angew. Chem. Int. Ed., 2015, 54, 500.
[34] Kobayashi M, Seki M, Tabata H, Watanabe Y, Yamashita I. Nano Lett., 2010, 10: 773.
[35] Lim J S, Kim S M, Lee S Y, Stach E A, Culver J N, Harris M T. J. Colloid Interface Sci., 2010, 342: 455.
[36] Lee S Y, Royston E, Culver J N, Harris M T. Nanotechnology, 2005, 16: S435.
[37] Lim J S, Kim S M, Lee S Y, Stach E A, Culver J N, Harris M T. Nano Lett., 2010, 10: 3863.
[38] Lim J S, Kim S M, Lee S Y, Stach E A, Culver J N, Harris M T. J. Nanomater., 2010, 2010: 620505.
[39] Liu N, Wang C, Zhang W, Luo Z, Tian D, Zhai N, Zhang H, Li Z, Jiang X, Tang G, Hu Q. Nanotechnology, 2012, 23: 335602.
[40] Manocchi A K, Seifert S, Lee B, Yi H. Langmuir, 2010, 26: 7516.
[41] Wnek M, Górzny M L, Ward M B, Wälti C, Davies A G, Brydson R, Evans S D, Stockley P G. Nanotechnology, 2013, 24: 025605.
[42] Balci S, Bittner A M, Schirra M, Thonke K, Sauer R, Hahn K, Kadri A, Wege C, Jeske H, Kern K. Electrochim. Acta, 2009, 54: 5149.
[43] Royston E, Lee S Y, Culver J N, Harris M T. J. Colloid Interface Sci., 2006, 298: 706.
[44] Royston E S, Brown A D, Harris M T, Culver J N. J. Colloid Interface Sci., 2009, 332: 402.
[45] Gerasopoulos K, McCarthy M, Banerjee P, Fan X, Culver J N, Ghodssi R. Nanotechnology, 2010, 21: 055304.
[46] Gerasopoulos K, Chen X, Culver J, Wang C, Ghodssi R. Chem.Commun., 2010, 46: 7349.
[47] Pomerantseva E, Gerasopoulos K, Chen X Y, Rubloff G, Ghodssi R. J. Power Sources, 2012, 206: 282.
[48] 王文如(Wang W R), 杨正兵(Yang Z B). 压电与声学(Piezoelecrics and Acoustooptics), 2001, 23: 68.
[49] 陈柱(Chen Z), 聂立波(Nie L B), 常浩(Chang H).分析仪器(Analytical Instrumentation), 2011, 4: 18.
[50] Zhang F H, Gerasopoulos K, Fan X Z, Brown A D, Culver J N, Ghodssi R. Chem. Commun., 2014, 50: 12977.
[51] Brown A D, Naves L, Wang X, Ghodssi R, Culver J N. Biomacromolecules, 2013, 14: 3123.
[52] Jung S, Yi H. Langmuir, 2014, 30: 7762.
[53] 庞尔丽(Pang E L). 生物学通报(Bulletin of Biology), 2012, 47: 11.
[54] 沈瑶瑶(Shen Y Y), 严庆丰(Yan Q F). 生命科学(Chinese Bulletin Life of Sciences), 2013, 25: 271.
[55] Taylor I W, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana J L. Nat. Biotechnol., 2009, 27: 199.
[56] Ekman D, Light S, Björklund A K, Elofsson A. Genome Biol., 2006, 7: R45.
[57] Phillips E, Medina O P, Zanzonico P B, Carvajal R D, Mohan P, Ye Y P, Humm J, Gönen M, Kalaigian H, Schöder H, Strauss H W, Larson S M, Wiesner U, Bradbury M S. Sci. Transl. Med., 2014, 6: 260ra149.
[58] 张金超(Zhang J C), 杨康宁(Yang K N), 张海松(Zhang H S), 梁兴杰(Liang X J). 化学进展(Progress in Chemistry), 2013, 25: 397.
[59] 方红(Fang H). 东南大学硕士论文(Master Dissertation of Southeast University), 2004.
[60] Lee L A, Nguyen Q L, Wu L Y, Horvath G, Nelson S R, Wang Q. Biomacromolecules, 2012, 13: 422.
[61] Bruckman M A, Jiang K, Simpson E J, Randolph L N, Luyt L G, Yu X, Steinmetz N F. Nano Lett., 2014, 14: 1551.
[62] Wu M, Shi J Y, Fan D, Zhou Q, Wang F, Niu Z W, Huang Y. Biomacromolecules, 2013, 14: 4032.
[63] 高利增(Gao L Z), 阎锡蕴(Yan X Y).生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2013, 40: 892.
[64] Hou H X, Luo Q, Liu J L, Zhou Q, Miao L, Zhang C Q, Gao Y Z, Zhang X Y, Xu J Y, Dong Z Y, Liu J Q. ACS Nano, 2012, 6: 8692.
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[8] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[9] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[10] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[11] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[12] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[13] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[14] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.