English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1500-1508 DOI: 10.7536/PC150341 前一篇   后一篇

• 综述与评论 •

橡胶硫化促进剂的研究进展

李龙飞1,2, 摆音娜1,2, 雷鸣1*, 刘力1,2*   

  1. 1. 北京化工大学化工资源有效利用国家重点实验室 北京 100029;
    2. 北京化工大学北京市先进弹性体工程技术研究中心 北京 100029
  • 收稿日期:2015-03-01 修回日期:2015-05-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 雷鸣, 刘力 E-mail:leim@mail.buct.edu.cn;liul@mail.buct.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2015CB654700)和国家自然科学基金项目(No.21373023)资助

Progress in Rubber Vulcanization Accelerator

Li Longfei1,2, Bai Yinna1,2, Lei Ming1*, Liu Li1,2*   

  1. 1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Beijing Engineering Research Centre of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2015-03-01 Revised:2015-05-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Key Basic Research Program of China(No. 2015CB654700) and the National Natural Science Foundation of China (No. 21373023).
作为橡胶加工成形过程中最重要的步骤之一,橡胶硫化直接影响橡胶制品的性能。与单用硫黄相比,少量的促进剂与硫磺配合可以极大地提高硫化速率,改善硫化胶的性能。但目前橡胶硫化促进剂普遍具有潜在的人类健康和环境风险问题,同时硫化促进效能较低、功能单一。因此,开发无毒、无或少氧化锌、高效、多功能的新型硫化促进剂对橡胶工业具有非常重要的意义。本文首先简要介绍了橡胶硫化促进剂的发展历程,然后综述了近年来新型橡胶硫化促进剂的研究进展(包括离子液体促进剂、新型二硫代氨基甲酸盐类促进剂、稀土促进剂、以及含新型副促进剂的硫化并用体系等),并对橡胶硫化促进机理、新型橡胶硫化促进剂的设计进行了展望。
Vulcanization, as the key step in rubber process, directly affects the processing and performance of rubber products. Compared with sulfur alone, the presence of small amounts of accelerator together with sulfur can significantly improve the properties of final vulcanisate. However, the present accelerators generally pose potential risks to human health and the environment, and are suffering with their poor efficiency and sole function. Therefore, developing novel green accelerator that is non-poisonous, free or low zinc oxide content added, high-effective and multifunctional, is critical for rubber industry. This review briefly introduces the development of rubber, and the recent progresses on accelerator including the ionic liquids acceleration agents, the new bis(dithiocarbimato)zinc(II) accelerators, the rare earth vulcanizing accelerator and the novel secondary accelerators. Besides, the prospect of the in-depth study of vulcanization mechanism and the development of novel vulcanization accelerator are proposed.

Contents
1 Introduction
2 Ionic liquids vulcanization accelerators
3 Novel dithiocarbamate accelerators
4 Rare earth accelerators
4.1 Traditional rare earth accelerators
4.2 Novel zinc-free rare earth accelerators
4.3 Rare earth-transition metal multinuclear accelerators
5 New secondary accelerators
6 Conclusion and outlook

中图分类号: 

()
[1] Mottaghi M, Khorasani S N, Esfahany M N, Farzadfar A, Talakesh M M. J. Elastom. Plast., 2012, 44: 443.
[2] Coleman M M, Shelton J R, Koenig J L. Ind. Eng. Chem. Res., 1974, 13: 154.
[3] Lopez-Manchado M A, Arroyo M, Herrero B, Biagiotti J. J. Appl. Polym. Sci., 2003, 89: 1.
[4] Sasidharan K K, Joseph R, Palaty S, Gopalakrishnan K S, Rajammal G, Pillai P V. J. Appl. Polym. Sci., 2005, 97: 1804.
[5] 王维( Wang W ), 周铭露( Zhou M L ), 梁露英( Liang L Y ), 王文( Wang W ), 凌启淡( Ling Q D ). 化学进展(Progress in Chemistry), 2013, 213: 350.
[6] Steudel R, Steudel Y, Wong M W. Chemistry, 2008, 14: 919.
[7] Valentin J L, Carretero-Gonzalez J, Mora-Barrantes I, Chasse W, Saalwachter K. Macromolecules, 2008, 41: 4717.
[8] 苗力孝( Miao L L ), 王维坤( Wang W S ), 王梦佳( Wang M J ), 段博超( Duan B C ), 杨裕生( Yang Y S ), 王安邦( Wang A B ). 化学进展( Progress in Chemistry ), 2013, 11: 1867.
[9] Kamoun M, Nassour A, Michael N. Adv. Mater. Sci. Eng., 2009, 2009: 1.
[10] Steudel R, Steudel Y, Mak A M, Wong M W. J. Org. Chem., 2006, 71: 9302.
[11] Pierre C C, Datta R N. Rubber. Chem. Technol., 2004, 77: 201.
[12] Zhao F, Shi X Y, Zhang P. J. Macromol. Sci., Part B:Phys., 2009, 48: 663.
[13] Rajan V V, Dierkes W K, Noordermeer J W M, Joseph R. Rubber. Chem. Technol., 2005, 78: 572.
[14] Nieuwenhuizen P J, Timal S, Haasnoot J G, Spek A L, Reedijk J. Chem-Eur. J., 1997, 3: 1846.
[15] Wootthikanokkhan J, Clythong N. Rubber. Chem. Technol., 2003, 76: 1116.
[16] Thomas S P, Mathew E J, Marykutty C V. J. Appl. Polym. Sci., 2012, 124: 3099.
[17] Nieuwenhuizen P, Van Duin M, Haasnoot J, Reedijk J, McGill W. J. Appl. Polym. Sci., 1999, 73: 1247.
[18] Nieuwenhuizen P J. Appl. Catal., A, 2001, 207: 55.
[19] Alam M N, Mandal S K, Debnath S C. J. Appl Polym. Sci., 2012, 126: 1830.
[20] de Vocht F, Burstyn I, Straif K, Vermeulen R, Jakobsson K, Nichols L, Peplonska B, Taeger D, Kromhout H. J. Environ. Monit., 2007, 9: 253.
[21] Altkofer W, Braune S, Ellendt K, Kettl-Gromminger M, Steiner G. Mol. Nutr. Food. Res., 2005, 49: 235.
[22] Havery D C, Fazio T. Food. Chem. Toxicol., 1982, 20: 939.
[23] Alves L D, Rubinger M M M, Tavares E D, Janczak J, Pacheco E B A V, Visconte L L Y, Oliveira M R L. J. Mol. Struct., 2013, 1048: 244.
[24] Dost A, Straughan J, Sorahan T. Occup. Med., 2007, 57: 186.
[25] Biswas A, Shogren R L, Stevenson D G, Willett J L, Bhowmik P K. Carbohyd. Polym., 2006, 66: 546.
[26] Lu J M, Yan F, Texter J. Progress in Polymer Science, 2009, 34: 431.
[27] Deetlefs M, Seddon K R. Green Chemistry, 2003, 5: 181.
[28] Cybulski J, Wisniewska A, Kulig-Adamiak A,Lewicka L,Cieniecka-Roslonkiewicz A,Kita K,Fojutowski A,Nawrot J,Materna K,Pernak J. Chemistry, 2008,14: 9305.
[29] Maciejewska M, Walkiewicz F, Zaborski M. Ind. Eng. Chem. Res., 2013, 52: 8410.
[30] Rogers R D, Seddon K R. Science, 2003, 302: 792.
[31] Pernak J, Walkiewicz F, Maciejewska M, Zaborski M. Ind. Eng. Chem. Res., 2010, 49: 5012.
[32] Parada-Aliste J, Megia-Fernandez A, De la Torre-Gonzalez D, Hernandez-Mateo F, Santoyo-Gonzalez F. Eur. J. Org. Chem., 2013, 2013: 3758.
[33] Ghosh D, Sen K, Das A K. Structural Chemistry, 2011, 23: 227.
[34] Shumane M, Gradwell M H S, McGill W J. J. Appl. Polym. Sci., 2001, 82: 3074.
[35] Price E R, Wasson J R. J. Inorg. Nucl. Chem., 1974, 36: 67.
[36] Palaty S, Joseph R. Plast. Rubber. Compos., 2001, 30: 270.
[37] Lotter N O, Bradshaw D J. Miner. Eng., 2010, 23: 945.
[38] Mariano R M, da Costa H M, Oliveira M R L, Rubinger M M M, Visconte L L Y. J. Appl. Polym. Sci., 2008, 110: 1938.
[39] Cunha L M G, Rubinger M M M, Oliveira M R L, Tavares E D, Sabino J R, Pacheco E B A V,Visconte L L Y. Inorg. Chim. Acta.,2012,383: 194.
[40] Li L, Bai Y, Lei M, Liu L. To be submitted.
[41] Shyichuk A,Lis S,Meinrath G. J. Rare. Earth., 2014, 32: 248.
[42] Bunzli J C G, Piguet C. Chem. Rev., 2002, 102: 1897.
[43] Pantazis D A, Neese F. J. Chem. Theory. Comput., 2009, 5: 2229.
[44] Benelli C, Gatteschi D. Chem. Rev., 2002, 102: 2369.
[45] Bunzli J C, Piguet C. Chem. Soc. Rev.,2005,34: 1048.
[46] Bünzli J-C G. Chem. Lett., 2009, 38: 104.
[47] Bottrill M, Kwok L, Long N J. Chem. Soc. Rev., 2006, 35: 557.
[48] Liu L, Zhang L Q, Zhao S H, Jin R U, Liu M L. J. Rare. Earth., 2002, 20: 241.
[49] Liu L, He L, Yang C, Zhang W, Jin R G, Zhang L Q. Macromol. Rapid. Commun., 2004, 25: 1197.
[50] Jørgensen C K. Mol. Phys., 1962, 5: 271.
[51] Brown D, Holah D. JCS. Chem. Commun., 1968, 13: 1545.
[52] Infante I, Gagliardi L, Wang X, Andrews L. J. Phys. Chem. A, 2009, 113: 2446.
[53] Roger M, Belkhiri L, Arliguie T, Thuéry P, Boucekkine A, Ephritikhine M. Organometallics, 2008, 27: 33.
[54] Zhang Q J, Wei F X, Zhang W G, Huang M Y, Luo Y F. J. Rare Earths, 2002, 20: 395.
[55] Lin X H, Liu Q T, Chen Z H, Wang D Z. J. Rare Earths, 2007, 25: 396.
[56] Wen S, Zhang X, Hu S, Zhang L, Liu L. Polymer, 2009, 50: 3269.
[57] Steudel R, Steudel Y. Chemistry, 2006, 12: 8589.
[58] Wang X, Andrews L, Infante I, Gagliardi L. J. Phys. Chem. A, 2009, 113: 12566.
[59] Hu S, Wen S, Liu J, Liu L, Bai Y, Du Y. CN103819730-A, 2014.
[60] Hu S, Wen S, Liu L, Bai Y, Du Y. CN103819726-A, 2014.
[61] Hu S, Liu L, Wen S, Bai Y, Du Y. CN103834059-A, 2014.
[62] Liu L, Lu Y L, He L, Zhang W, Yang C, Liu Y D, Zhang L Q, Jin R G. Adv. Funct. Mater., 2005, 15: 309.
[63] Wang Y H, Wang J X, Dong X T, Yu W S, Liu G X. Chem. J. Chin. Univ., 2012, 33: 1657.
[64] Marykutty C V, Mathew G, Mathew E J, Thomas S. J. Appl. Polym. Sci., 2003, 90: 3173.
[65] Ghosh A K, Basu D K. Polym. Int., 2003, 52: 1370.
[66] Kurien M, Claramma N M, Kuriakose A P. J. Appl. Polym. Sci., 2004, 93: 2781.
[67] Susamma A P, Claramma N M, Nair A B, Kuriakose A P. J. Appl. Polym. Sci., 2010, 115: 2310.
[68] Philpot M W. In IRI IVth Rubber Technology Conference, London, 1962.
[69] Moore C G, Saville B, Watson A A. Rubber. Chem. Technol., 1961, 34: 795.
[70] Susamma A P, Mini V T E, Kuriakose A P. J. Appl. Polym. Sci., 2001, 79: 1.
[71] Huang X W, Long Z Q, Li H W, Ying W J, Zhang G C, Xue X X. J. Rare. Earth., 2005, 23: 1.
[72] Malick D K, Petersson G A, Montgomery J A. J. Chem. Phys., 1998, 108: 5704.
[73] Nieuwenhuizen P J, Ehlers A W, Hofstraat J W, Janse S R, Nielen M W F, Reedijk J, Baerends E-J. Chem-Eur. J., 1998, 4: 1816.
[1] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[5] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[6] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[7] 何涛, 马小波, 徐志宏, 王周玉. 连续流微反应[J]. 化学进展, 2016, 28(6): 829-838.
[8] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.
[9] 王珍珍, 翟尚儒, 翟滨, 肖作毅, 安庆大. 基于对硝基苯酚还原模型反应的纳米金催化材料[J]. 化学进展, 2014, 26(0203): 234-247.
[10] 徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*. 二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用[J]. 化学进展, 2013, 25(07): 1079-1089.
[11] 吴亮, 沐春磊, 张群林*, 吕忱, 张晓悦. 纳米粒子参与的鲁米诺化学发光及其分析应用[J]. 化学进展, 2013, 25(07): 1187-1197.
[12] 赵传奇, 曲晓刚*. 稀土手性配合物在核酸识别及调控方面的研究[J]. 化学进展, 2013, 25(04): 539-544.
[13] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.
[14] 赵贝贝, 张艳, 唐涛, 王风云, 张维冰, 李彤. 硅胶基质高效液相色谱填料研究进展[J]. 化学进展, 2012, 24(01): 122-130.
[15] 秦玉升, 王献红, 王佛松. 二氧化碳基共聚物[J]. 化学进展, 2011, 23(4): 613-622.
阅读次数
全文


摘要

橡胶硫化促进剂的研究进展