English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1343-1355 DOI: 10.7536/PC150338 前一篇   后一篇

• 综述与评论 •

全钒氧化还原液流电池碳素类电极的活化

王刚1, 陈金伟1, 朱世富1, 张洁1, 刘效疆2, 王瑞林1*   

  1. 1. 四川大学材料科学与工程学院 成都 610065;
    2. 中国工程物理研究院电子工程研究所 绵阳 621900
  • 收稿日期:2015-03-01 修回日期:2015-04-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 王瑞林 E-mail:rl.wang@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21306119),四川省科技支撑计划(No.2013FZ0034,2013JY0150,四川大学优秀青年学者基金(No.2013SCU04A23),东方电气集团有限公司项目(No.13H0844)和中物院超精细加工技术重点实验室开放基金(No.HG2012039,KF13007)资助

Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery

Wang Gang1, Chen Jinwei1, Zhu Shifu1, Zhang Jie1, Liu Xiaojiang2, Wang Ruilin1*   

  1. 1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China;
    2. Institute of Electronics Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2015-03-01 Revised:2015-04-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21306119), the Provincial Natural Science Foundation of Sichuan (No.2013FZ0034, 2013JY0150), the Outstanding Young Scientist Foundation of Sichuan University (No.2013SCU04A23), the Financial Support from Dongfang Electric Corporation (No.13H0844), and the China Academy of Engineering Physics Foundation(LPMT,CAEP) (No. HG2012039, KF13007).
近年来,全钒氧化还原液流电池(VRFB)作为一种新型的储能电池备受关注,作为VRFB的核心材料,电极的活化一直都是研究的热点。碳素类材料,如碳毡和石墨毡,以其低成本和高性能被广泛用作钒电池电极。通过活化处理增加碳素类电极表面的含氧、含氮官能团或引入各种催化剂可以显著提高V(Ⅴ)/V(Ⅳ)和V(Ⅲ)/V(Ⅱ)电对氧化还原反应的电化学活性和可逆性,进而提高VRFB的总体性能,最终促进VRFB的商业化进程。本文综述了VRFB碳素类电极的氧化活化法、掺杂活化法和碳纳米催化剂活化法等几种常用活化方法的研究进展,并对VRFB碳素类电极的进一步研究和应用前景进行了展望。
In recent years, all-vanadium redox flow battery (VRFB) has been paid much attention as a new type of battery for energy storage. Researchers have been focusing much on activation of carbon electrodes used for the key material in VRFB. The carbon electrode, such as carbon felts and graphite felts, are widely used as electrode for VRFB due to their low cost and high performance. The electrochemical activation and reversibility towards V(Ⅴ)/V(Ⅳ) and V(Ⅲ)/V(Ⅱ) redox reactions can be significantly improved after increasing the oxygen and nitrogen functional groups on the surface of carbon electrodes or introducing all kinds of catalysts by activation treatment, which can improve the overall performance of VRFB and further accelerate its commercialization process. The research progress in various common activation methods including oxidation activation, doping activation and carbon nanocatalysts activation, are summarized in this paper. The further research and prospect on carbon electrodes in VRFB are also presented.

Contents
1 Introduction
2 Carbon electrodes
3 Active of carbon electrodes
3.1 Oxidation activation method
3.2 Doping activation method
3.3 Carbon nanocatalysts activation method
3.4 Other activation methods
4 Outlook

中图分类号: 

()
[1] Redox Flow Cell Development and Demonstration Project. US: Department of Energy, NASA TM-79067, 1979. 245.
[2] Skyllas-Kazacos M, Robins R G. AU 0575247, 1986
[3] Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, Mjalli F S, Saleem M. J. Electrochem. Soc., 2011, 158 (8): R55.
[4] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D W, Lemmon J P, Liu J. Chem. Rev., 2011, 111: 3577.
[5] Wang W, Luo Q T, Li B, Wei X L, Li L Y, Yang Z G. Adv. Funct. Mater., 2013, 23: 970.
[6] 王刚(Wang G), 陈金伟(Chen J W), 汪雪芹(Wang X Q), 田晶(Tian J), 刘效疆(Liu X J), 王瑞林(Wang R L). 化学进展(Progress in Chemistry), 2013, 25(7): 1102.
[7] Ding C, Zhang H M, Li X F, Liu T, Xing F. J. Phys. Chem. Lett., 2013, 4(8): 1281.
[8] Parasuraman A, Lim T M, Menictas C, Skyllas-Kazacos M. Electrochim. Acta, 2013, 101: 27.
[9] 李文跃(Li W Y), 魏冠杰(Wei G J), 刘建国(Liu J G), 严川伟(Yan C W). 储能科学与技术(Energy Storage Science and Technology), 2013, 2(4): 342.
[10] 许茜(Xu Q), 乔永莲(Qiao Y L).电源技术(Chinese Journal of Power Sources), 2008, 32(12): 823.
[11] 陈金庆(Chen J Q), 汪钱(Wang Q), 王保国(Wang B G).现代化工(Modern Chemical Industry), 2006, 26(9): 21.
[12] 李志明(Li Z M), 黄可龙(Huang K L), 满瑞林(Man R L). 电池(Battery Bimonthly), 2006, 36(2): 150.
[13] 崔旭梅(Cui X M), 王军(Wang J), 陈孝娥(Chen X E), 赵英涛(Zhao Y T), 李云(Li Y). 化工新型材料(New Chemical Materials), 2008, 36(7): 17.
[14] 李华(Li H), 常守文(Chang S W), 严川伟(Yan C W).电化学(Electrochemistry), 2002, 8(3): 257.
[15] 魏冠杰(Wei G J), 范新庄(Fan X Z), 刘建国(Liu J G), 严川伟(Yan C W). 新型碳材料(New Carbon Materials), 2014, 29(4): 272.
[16] 朱华琴(Zhu H Q), 李伟善(Li W S). 电池工业(Chinese Battery Industry), 2008, 13(1): 65.
[17] 顾军(Gu J), 李光强(Li G Q), 隋智通(Sui Z T). 电源技术(Chinese Journal of Power sources), 2000, 24(3): 181.
[18] 李俊杰(Li J J), 朱扬清(Zhu Y Q), 杨华铨(Yang H S). 广西大学学报(自然科学版) (Journal of Guangxi University(Nat. Sci. Ed.)), 2001, 26(2): 83.
[19] Sum E, Skyllas-Kazacos M. J. Power Sources, 1985, 15(2/3): 179.
[20] Sum E, Rychcik M, Skyllas-kazacos M. J. Power Sources, 1985, 16(2): 85.
[21] Skyllas-kazacos M, Rychcik M. J. Power Sources, 1987, 19: 45.
[22] Skyllas-Kazacos M, Grossmith F. J. Electrochem. Soc., 1987, 134: 2950.
[23] 李晓兵(Li X B), 常芳(Chang F), 崔艳华(Cui Y H), 兰伟(Lan W), 孟凡明(Meng F M). 电池工业(Chinese Battery Industry), 2007, 12(01): 41.
[24] 杜涛(Du T), 李爱魁(Li A K), 刘飞(Liu F), 付念先(Fu N X). 电源技术(Chinese Journal of Power Sources), 2013, 37(05): 888.
[25] Zhong S, Padeste C, Kazacos M, Skyllas-kazacos M. J. Power Sources, 1993, 45(1): 29.
[26] Sun B, Skyllas-kazacos M. Electrochim. Acta, 1992, 37(7): 1253.
[27] Sun B, Skyllas-kazacos M. Electrochim. Acta, 1992, 37(13): 2459.
[28] 刘素琴(Liu S Q), 郭小义(Guo X Y), 黄可龙(Huang K L), 刘勇刚(Liu Y G), 李晓刚(Li X G). 电池(Battery Bimonthly), 2005, 35(3): 183.
[29] 刘素琴(Liu S Q), 史小虎(Shi X H), 黄可龙(Huang K L), 李晓刚(Li X G). 无机材料学报(Journal of Inorganic Materials), 2009, 24(4): 798.
[30] 伍秋美(Wu Q M), 黄可龙(Huang K L), 桑商斌(Sang S B), 刘素琴(Liu S Q), 李晓刚(Li X B). 电源技术(Chinese Journal of Power Sources), 2005, 29(7): 456.
[31] 李晓刚(Li X G), 黄可龙(Huang K L), 谭宁(Tan N), 刘素琴(Liu S Q), 陈立泉(Chen L Q). 无机材料学报(Journal of Inorganic Materials), 2006, 21(5): 1115.
[32] 刘然(Liu R), 廖孝燕(Liao X Y), 杨春(Yang C), 谢晓峰(Xie X F), 周涛(Zhou T). 化工进展(Chemical Industry and Engineering Progress), 2011, 30: 762.
[33] Agar E, Dennison C R, Knehr K W, Kumbur E C. J. Power Sources, 2013, 225: 89.
[34] 刘迪(Liu D), 谭宁(Tan N), 黄可龙(Huang K L), 刘素琴(Liu S Q). 电源技术(Chinese Journal of Power Sources), 2006, 30(3): 224.
[35] Li X G, Huang K L, Liu S Q, Tan N, Chen L Q. Trans. Nonferrous Met. Soc. China, 2007, 17(1): 195.
[36] Li X G, Huang K L, Liu S Q, Chen L Q. J. Cent. South Univ. T., 2007, 14(1): 51.
[37] 袁俊(Yuan J), 余晴春(Yu Q C), 刘逸枫(Liu Y F), 马亮亮(Ma L L), 吴益华(Wu Y H). 电化学(Electrochemistry), 2006, 12(03): 271.
[38] Zhang W G, Xi J Y, Li Z H, Zhou H P, Liu L, Wu Z H, Qiu X P. Electrochim. Acta, 2013, 89: 429.
[39] 刘素琴(Liu S Q), 张文昔(Zhang W X), 黄可龙(Huang K L). 电源技术(Chinese Journal of Power Sources), 2006, 30(5): 395.
[40] Yue L, Li W S, Sun F Q, Zhao L Z, Xing L D. Carbon, 2010, 48(11): 3079.
[41] 苏安群(Su A Q), 汪南方(Wang N F), 刘素琴(Liu S Q), 吴涛(Wu T), 彭穗(Peng S). 物理化学学报(Acta Physico-Chimica Sinica), 2012, 28(6): 1387.
[42] Di Blasi A, di Blasi O, Briguglio N, Aricò A S, Sebastián D, Lázaro M J, Monforte G, Antonucci V. J. Power Sources, 2013, 227: 15.
[43] Di Blasi A, Briguglio N, di Blasi O, Antonucci V. Appl. Energy, 2014, 125: 114.
[44] Gao C, Wang N F, Peng S, Liu S Q, Lei Y, Liang X X, Zeng S S, Zi H F. Electrochim. Acta, 2013, 88: 193.
[45] Wu X X, Xu H F, Xu P C, Shen Y. J. Power Sources, 2014, 263: 104.
[46] Sun B, Skyllas-kazacos M. Electrochim. Acta, 1991, 36(3/4): 513.
[47] 王新伟(Wang X W), 王双印(Wang S Y), 陈君(Chen J). 化工新型材料(New Chemical Materials), 2014, 42(1): 107.
[48] Wang W H, Wang X D. Rare Met., 2007, 26(2): 131.
[49] Wang W H, Wang X D. Electrochim. Acta, 2007, 52(24): 6755.
[50] 王文红(Wang W H), 薛方勤(Xue F Q), 王新东(Wang X D). 材料研究学报(Chinese Journal of Materials Research), 2007, 21(5): 542.
[51] Jeong S, Kim S, Kwon Y. Electrochim. Acta, 2013, 114: 439.
[52] González Z, Sánchez A, Blanco C, Granda M, Menéndez R, Santamaría R. Electrochem. Commun., 2011, 13(12): 1379.
[53] Suárez D J, González Z, Blanco C, Granda M, Menéndez R, Santamaría R. ChemSusChem, 2014, 7(3): 914.
[54] Li B, Gu M, Nie Z M, Shao Y Y, Luo Q T, Wei X L, Li X L, Xiao J, Wang C M, Sprenkle V, Wang W. Nano Lett., 2013, 13(3): 1330.
[55] Li B, Gu M, Nie Z M, Wei X L, Wang C M, Sprenkle V, Wang W. Nano Lett., 2013, 14(1): 158.
[56] Kim K J, Park M S, Kim J H, Hwang U, Lee N J, Jeong G, Kim Y J. Chem. Commun., 2012, 48(44): 5455.
[57] Yao C, Zhang H M, Liu T, Li X F, Liu Z H. J. Power Sources, 2012, 218: 455.
[58] Shen Y, Xu H F, Xu P C, Wu X X, Dong Y M, Lu L. Electrochim. Acta, 2014, 132: 37.
[59] Wu X X, Xu H F, Lu L, Zhao H, Fu J, Shen Y, Xu P C, Dong Y M. J. Power Sources, 2014, 250: 274.
[60] Shao Y Y, Wang Q, Engelhard M, Wang C M, Dai S, Liu J, Yang Z G, Lin Y H. J. Power Sources, 2010, 195(13): 4375.
[61] Wu T, Huang K L, Liu S Q, Zhuang S X, Fang D, Li Sha, Lu D, Su A Q. J. Solid State Electrochem., 2012, 16(2): 579.
[62] Lee H, Kim H. J. Appl. Electrochem., 2013, 43(5): 553.
[63] He Z X, Su A Q, Gao C, Zhou Z, Pan C Y, Liu S Q. Ionics, 2013, 19(7): 1021.
[64] Flox C, Rubio-García J, Skoumal M, Andreu T, Morant J R. Carbon, 2013, 60: 280.
[65] Flox C, Skoumal M, Rubio-García J, Andreu T, Morant J R. Appl. Energy, 2013, 109: 344.
[66] Flox C, Rubio-Garcia J, Nafria R, Zamani R, Skoumal M, Andreu T, Arbiol J, Cabot A, Morante J R. Carbon, 2012, 50(6): 2347.
[67] Li W Y, Liu J G, Yan C W. Electrochim. Acta, 2011, 56(14): 5290.
[68] Li W Y, Liu J G, Yan C W. Carbon, 2013, 55: 313.
[69] Tsai H M, Yang S Y, Ma C C M, Xie X F. Electroanalysis, 2011, 23(9): 2139.
[70] Tsai H M, Yang S J, Ma C C M, Xie X F. Electrochim. Acta, 2012, 77: 232.
[71] Han P X, Wang H B, Liu Z H, Chen X, Ma W, Yao J H, Zhu Y W, Cui G L. Carbon, 2011, 49(2): 693.
[72] González Z, Botas C, Álvarez P, Roldán S, Blanco C, Santamaría R, Granda M, Menéndez R. Carbon, 2012. 50(3): 828.
[73] González Z, Botas C, Blanco C, Santamaría R, Granda M, Álvarez P, Menéndez R. J. Power Sources, 2013, 241: 349.
[74] González Z, Botas C, Blanco C, Santamaría R, Granda M, Álvarez P, Menéndez R. Nano Energy, 2013, 2(6): 1322.
[75] Jin J T, Fu X G, Liu Q, Liu Y, Wei Z Y, Niu K X, Zhang J Y. ACS Nano, 2013, 7(6): 4764.
[76] Park M, Jeon I Y, Ryu J, Baek J B, Cho J. Adv. Energy Mater., 2014, 5(5): 1401550.
[77] Di Blasi O, Briguglio N, Busacca C, Ferraro M, Antonucci V, di Blasi A. Applied Energy, 2015, 147: 74.
[78] Zhu H Q, Zhang Y M, Yue L, Li W S. J. Power Sources, 2008, 184(2): 637.
[79] Li W Y, Liu J G, Yan C W. Carbon, 2011, 49(11): 3463..
[81] Li W Y, Liu J G, Yan C W. J. Solid State Electrochem., 2013, 17(5): 1369.
[82] Yang H, Hung C H, Wang S P, Chiang I L. Rare Metal, 2011, 30(1): 1.
[83] González Z, Vizireanu S, Dinescu G, Blanco C, Santamaría R. Nano Energy, 2012, 1(6): 833.
[84] González Z, Álvarez P, Blanco C, Vega-Díaz S, Tristán-López F, Rajukumar L P, Cruz-Silva R, Elías A L, Terrones M, Menéndez R. Sustainable Energy Technologies and Assessments, 2015, 9: 105.
[85] Wei G J, Jia C K, Liu J G, Yan C W. J. Power Sources, 2012, 220: 185.
[86] Friedl J, Bauer C M, Rinaldi A, Stimming U. Carbon, 2013, 63: 228.
[87] Wang S Y, Zhao X S, Cochell T. J. Phys. Chem. Lett., 2012, 3(16): 2164.
[88] Manahan M P, Liu Q H, Gross M L, Mench M M. J. Power Sources, 2013, 222: 498.
[89] Flox C, Fabrega C, Andreu T, Morata A, Rubio-Garcia J, Morante J R. RSC Adv., 2013, 3(30): 12056.
[90] Wei G J, Liu J G, Zhao H, Yan C W. J. Power Sources, 2013, 241: 709.
[91] He Z X, Liu L, Gao C, Zhou Z, Liang X X, Lei Y, He Z, Liu S Q. RSC Adv., 2013, 3(43): 19774.
[92] Han P X, Yue Y H, Liu Z H, Xu W, Zhang L X, Xu H X, Dong S, Cui G L. Energy Environ. Sci., 2011, 4(11): 4710.
[93] Park M J, Jung Y J, Kim J Y, Lee H, Cho J. Nano Lett., 2013, 13(10): 4833.
[94] Wei G J, Fan X Z, Liu J G, Yan C W. J. Power Sources, 2015, 281: 1.
[95] Kim K J, Kim Y J, Kim J H, Park M S. Mater. Chem. Phys., 2011, 131(1/2): 547.
[96] Chen J Z, Liao W Y, Hsieh W Y, Hsu C C, Chen Y S. J. Power Sources, 2015, 274: 894.
[97] Mayrhuber I, Dennison C R, Kalra V, Kumbur E C. J. Power Sources, 2014, 260: 251.
[98] Xie Y W, Cheng Z Y, Guo B, Qiu Y F, Fan H B, Sun S F, Wu T, Jin L, Fan L. Ionics, 2015, 21: 283.
[99] Ulaganathan M, Jain A, Aravindan V, Jayaraman S, Ling W C, Lim T M, Srinivasan M P, Yan Q Y, Madhavi S. J. Power Sources, 2015, 274: 846.
[100] Jeong S, An S, Jeong J, Lee J, Kwon Y. J. Power Sources, 2015, 278: 245.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[7] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[8] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[9] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[10] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[11] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[12] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[13] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[14] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[15] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.