English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1074-1086 DOI: 10.7536/PC150314 前一篇   后一篇

• 综述与评论 •

烯烃易位聚合制备遥爪聚合物及嵌段共聚物

冯雨晨, 介素云*, 李伯耿   

  1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
  • 收稿日期:2015-03-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 介素云 E-mail:jiesy@zju.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No. 2011CB606004)资助

Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization

Feng Yuchen, Jie Suyun*, Li Bogeng   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2015-03-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Basic Research Program of China (973 Program)(No. 2011CB606004).
遥爪聚合物因其聚合物链的两端带有反应性官能团,可用于制备嵌段、接枝、星形、超支化等具有特殊结构的聚合物,其制备方法主要包括传统自由基聚合与可控/“活性”自由基聚合、阴离子聚合、阳离子聚合、易位聚合和缩合聚合等。相比于其他的传统聚合方法,烯烃易位聚合是一种较为温和的、产物分子量及结构可控的聚合方法。本文主要概述在各种链转移剂的存在下,采用环烯烃的开环易位聚合(ring-opening metathesis polymerization, ROMP)和非环二烯易位(acyclic diene metathesis, ADMET)聚合制备带有各种官能团的遥爪聚合物以及与其他活性聚合方法(NMRP、ATRP、RAFT、ROP等)相结合制备嵌段共聚物的研究进展。
Because of the two functional groups in their polymer chain ends, telechelic polymers are usually used for the preparation of copolymers with special structures, such as block, graft, star-like, hyperbranched copolymers. Telechelic polymers are mainly prepared by traditional radical polymerization, controlled/“living” radical polymerization, anionic polymerization, cationic polymerization, metathesis polymerization, and condensation polymerization, etc. In comparison with traditional polymerization methods, olefin metathesis polymerization can be conducted in milder conditions and the molecular weight and structure of products are more controllable. In this review, the preparation of telechelic polymers via ring-opening metathesis polymerization (ROMP) and acyclic diene metathesis (ADMET) polymerization in the presence of chain transfer agents are introduced. And the preparation of block copolymers via the combination with other living polymerization methods (such as NMRP, ATRP, RAFT, ROP, etc.) will be also included.

Contents
1 Introduction
2 Catalysts for olefin metathesis polymerization
3 Telechelic polymers via olefin metathesis polymerization
3.1 ROMP
3.2 ADMET polymerization
4 Block copolymers via the combination with other living polymerization methods
4.1 Combination of ROMP and NMRP
4.2 Combination of ROMP and ATRP
4.3 Combination of ROMP and RAFT
4.4 Combination of ROMP and ROP
5 Conclusion

中图分类号: 

()
[1] Tezuka Y. Prog. Polym. Sci., 1992, 17: 471.
[2] Bernaerts K V, Prez F E D. Prog. Polym. Sci., 2006, 31: 671.
[3] Yagci Y, Tasdelen M A. Prog. Polym. Sci., 2006, 31: 1133.
[4] Okcu S S, Durmaz Y Y, Yagci Y. Des. Monomers Polym., 2010, 13: 459.
[5] Bertrand A, Chen S, Souharce G, Ladaviere C, Fleury E, Bernard J. Macromolecules, 2011, 44: 3694.
[6] Sudo A, Hamaguchi T, Aoyagi N, Endo T. J. Polym. Sci. Part A: Polym. Chem., 2013, 51: 318.
[7] Yang S K, Ambade A V, Weck M. J. Am. Chem. Soc., 2010, 132: 1637.
[8] Huang Z, Ji H, Mays J W, Dadmun M D. Macromolecules, 2008, 41: 1009.
[9] Sugai N, Heguri H, Ohta K, Meng Q Y, Yamamoto T, Tezuka Y. J. Am. Chem. Soc., 2010, 132: 14790.
[10] Kricheldorf H R, Stukenbrock T. Polymer, 1997, 38: 3373.
[11] Bayer O, Bayer F, Rhein L. Angew. Chem. Int. Ed., 1947, 59: 257.
[12] Uraneck C A, Hsieh H L, Buck O G. J. Polym. Sci., 1960, 46: 535.
[13] Wanamaker C L, O'Leary L E, Lynd N A, Hillmyer M A, Tolman W B. Biomacromolecules, 2007, 8: 3634.
[14] Guillaume S M. Eur. Polym. J., 2013, 49: 768.
[15] Chen S, Deng Y, Chang X, Barqawi H, Schulzc M, Binder W H. Polym. Chem., 2014, 5: 2891.
[16] Noro A, Hayashi M, Ohshika A, Matsushita Y. Soft Matter, 2011, 7: 1667.
[17] Boutevin B, David G, Boyer C. Adv. Polym. Sci., 2007, 206: 31.
[18] Braunecker W A, Matyjaszewski K. Prog. Polym. Sci., 2007, 32: 93.
[19] Jagur-Grodzinski J. J. Polym. Sci. Part A: Polym. Chem., 2002, 40: 2116.
[20] Tasdelen M A, Kahveci M U, Yagci Y. Prog. Polym. Sci., 2011, 36: 455.
[21] Mutlu H, Espinosaac L M, Meier M A R. Chem. Soc. Rev., 2011, 40: 1404.
[22] Hilf S, Kilbinger A F M. Nat. Chem., 2009, 1: 537.
[23] Yokozawa T, Asai T, Sugi R, Ishigooka S, Hiraoka S. J. Am. Chem. Soc., 2000, 122: 8313.
[24] Grubbs R H, Chang S. Tetrahedron, 1998, 54: 4413.
[25] Furstner A. Angew. Chem. Int. Ed., 2000, 39: 3012.
[26] Grubbs R H. Tetrahedron, 2004, 60: 7117.
[27] Anderson A W, Merckling N G. US 2721189, 1955.
[28] Anderson A W, Merckling N G. Chem. Abstr., 1956, 50: 3008.
[29] Calderon N. Acc. Chem. Res., 1972, 5: 127.
[30] Harisson P J L, Chauvin Y. Makromol. Chem., 1970, 141.
[31] Schrock R R, Murdzek J S, Bazan G C, Robbins J, DiMare M, O'Regan M. J. Am. Chem. Soc., 1990, 112: 3875.
[32] Nguyen S T, Johnson L K, Grubbs R H. J. Am. Chem. Soc., 1992, 114: 3974.
[33] Nguyen S T, Grubbs R H. J. Am. Chem. Soc., 1993, 115: 9858.
[34] Scholl M, Ding S, Lee C W, Grubbs R H. Org. Lett., 1999, 1: 953.
[35] Courchay F C, Sworen J C, Ghiviriga I, Abboud K A, Wagener K B. Organometallics, 2006, 25: 6074.
[36] Higman C S, Plais L, Fogg D E. ChemCatChem, 2013, 5: 3548.
[37] Kingsbury J S, Harrity J P A, Bonitatebus P J, Hoveyda A H. J. Am. Chem. Soc., 1999, 121: 791.
[38] Garber S B, Kingsbury J S, Gray B L, Hoveyda A H. J. Am. Chem. Soc., 2000, 122: 8168.
[39] Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K. J. Am. Chem. Soc., 2004, 126: 9318.
[40] Hoveyda A H, Gillingham D G, Veldhuizen J J V, Kataoka O, Garber S B, Kingsbury J S, Harrity J P A. Org. Biomol. Chem., 2004, 2: 8.
[41] Bielawskia C W, Grubbs R H. Prog. Polym. Sci., 2007, 32: 1.
[42] Schleyer P Y R., William J E, Blanchard K R. J. Am. Chem. Soc., 1970, 92: 2377.
[43] Alliger N L, Sprague J T. J. Am. Chem. Soc., 1972, 94: 5734.
[44] Pitet L M, Hillmyer M A. Macromolecules, 2011, 44: 2378.
[45] Martinez H, Hillmyer M A. Macromolecules, 2014, 47: 479.
[46] Hillmyer M A, Grubbs R H. Macromolecules, 1993, 26: 872.
[47] Hillmyer M A, Grubbs R H. Macromolecules, 1996, 28: 8662.
[48] Hillmyer M A, Nguyen S T, Grubbs R H. Macromolecules, 1997, 30: 718.
[49] Bielawski C W, Scherman O A , Grubbs R H. Polymer, 2001, 42: 4939.
[50] Thomas R M, Grubbs R H. Macromolecules, 2010, 43: 3705.
[51] Morita T, Maughon B R, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33: 6621.
[52] Ji S, Hoye T R, Macosko C W. Macromolecules, 2004, 37: 5485.
[53] Maughon B R, Morita T, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33: 1929.
[54] Annunziata L, Fouquay S, Michaud G, Simon F, Guillaume S M, Carpentier J F. Polym. Chem., 2013, 4: 1313.
[55] Diallo A K, Annunziata L, Fouquay S, Michaud G, Simon F, Brusson J M, Guillaume S M, Carpentier J F. Polym. Chem., 2014, 5: 2583.
[56] Scherman O A, Rutenberg I M, Grubbs R H. J. Am. Chem. Soc., 2003, 125: 8515.
[57] Miller R G, Pinke P A, Baker D J. J. Am. Chem. Soc., 1970, 92: 4490.
[58] Wagener K B, Boncella J M, Ne1 J G. Macromolecules, 1991, 24: 2649.
[59] Lindmark-Hamberg M, Wagener K B. Macromolecules, 1987, 20: 2949.
[60] Marmo J C, Wagener K B. Macromolecules, 1993, 26: 2137.
[61] Marmo J C, Wagener K B. Macromolecules, 1995, 28: 2602.
[62] Tamura H, Maeda N, Matsumoto R, Nakayama A, Hayashi H, Ikushima K, Kuraya M. J. Macromol. Sci. Pure Appl. Chem., 1999, A36: 1153.
[63] Schwendeman J E, Wagener K B. Macromol. Chem. Phys., 2009, 210: 1818.
[64] Tamura H, Nakayama A. J. Macromol. Sci. Pure Appl. Chem., 2002, A39: 745.
[65] Brzezinska K R, Deming T J. Macromolecules, 2001, 34: 4348.
[66] Brzezinska K R, Wagener K B, Burns G T. J. Polym. Sci. Part A: Polym. Chem., 1999, 37: 849.
[67] Delgado P A, Zuluaga F, Matloka P, Wagener K B. J. Polym. Sci. Part A: Polym. Chem., 2009, 47: 5180.
[68] Miura Y, Sakai Y, Taniguchi I. Polymer, 2003, 44: 603.
[69] Banik S M, Monnot B L, Weber R L, Mahanthappa M K. Macromolecules, 2011, 44: 7141.
[70] Bielawski C W, Morita T, Grubbs R H. Macromolecules, 2000, 33: 678.
[71] Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y. React. Funct. Polym., 2008, 68: 1601.
[72] Ji S, Hoye T R, Macosko C W. Polymer, 2008, 49: 5307.
[73] Mahanthappa M K, Bates F S, Hillmyer M A. Macromolecules, 2005, 38: 7890.
[74] Xu Y, Thurber C M, Macosko C W, Lodge T P, Hillmyer M A. Ind. Eng. Chem. Res., 2014, 53: 4718.
[75] Katayama H, Fukuse Y, Nobuto Y, Akamatsu K, Ozawa F. Macromolecules, 2003, 36: 7020.
[76] Pitet L M, Hillmyer M A. Macromolecules, 2009, 42: 3674.
[77] Pitet L M, Amendt M A, Hillmyer M A. J. Am. Chem. Soc., 2010, 132: 8230.
[78] Pitet L M, Chamberlain B M, Hauser A W, Hillmyer M A. Macromolecules, 2010, 43: 8018.
[79] Xiang S, Zhang Q, Zhang G, Jiang W, Wang Y, Zhou H, Li Q, Tang J. Biomacromolecules, 2014, 15: 3112.
[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[3] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[4] 陈柯睿, 胡欣, 邱江凯, 朱宁, 郭凯. 开环易位聚合合成瓶刷聚合物[J]. 化学进展, 2020, 32(1): 93-102.
[5] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[6] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[7] 姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*. 聚双环戊二烯基多孔材料的制备及性能[J]. 化学进展, 2017, 29(5): 524-529.
[8] 王倩倩, 吴立萍, 王菁, 王力元*. 嵌段共聚物的导向自组装[J]. 化学进展, 2017, 29(4): 435-442.
[9] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[10] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[11] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[12] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[13] 盛玉萍, 闫南, 朱雨田, 安健. 嵌段共聚物在选择性溶剂中自组装过程的计算机模拟[J]. 化学进展, 2014, 26(0203): 358-365.
[14] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
[15] 王志鹏, 袁金颖* . Diels-Alder反应在构建特殊结构高分子中的应用[J]. 化学进展, 2012, 24(12): 2342-2351.