English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 763-774 DOI: 10.7536/PC150228 前一篇   后一篇

• 综述与评论 •

金属配位与主客体识别协同组装构筑机械互锁结构

叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军*   

  1. 杭州师范大学材料与化学化工学院 杭州 310036
  • 收稿日期:2015-02-01 修回日期:2015-03-01 出版日期:2015-06-15 发布日期:2015-04-02
  • 通讯作者: 李世军 E-mail:l_shijun@hznu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21072039,21172049,91127010),教育部创新团队(IRT1231)和浙江省自然科学基金项目(No.LZ13B030001)资助

Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition

Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun*   

  1. College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
  • Received:2015-02-01 Revised:2015-03-01 Online:2015-06-15 Published:2015-04-02
  • Contact: 10.7536/PC150228 E-mail:l_shijun@hznu.edu.cn
  • Supported by:
    The work is supported by the National Natural Science Foundation of China (No. 21072039, 21172049, 91127010), the Program for Changjiang Scholars and Innovative Research Team in Chinese University (IRT 1231), and the Zhejiang Provincial Natural Science Foundation of China (No. LZ13B030001).
机械互锁结构是一类具有独特性质的超分子实体,不但在拓扑学上具有重要的意义,而且是制备分子机器的结构基础,它们在纳米技术、生物、材料等领域有着巨大的应用前景。本文概述了通过配位作用组装制备轮烷、索烃及其他机械互锁结构研究的新进展,着重关注以金属配位作用作为一种构建方式与主客体识别协同组装制备机械互锁结构。由于金属配位键具有易成键、动态可逆、可调控等优点,采用金属配位作用构建机械互锁结构不仅可以大大地提高制备效率,而且有利于实现对机械互锁分子的可逆调控。
Mechanically interlocked structures are a kind of supramolecular entities with unique properties. They have attracted much attention not only because of their fascinating aspect of topologies, but also due to their great potential applications in nanotechnology, biology, and material science, as well as important bases for the preparation of molecular machines. This article summarizes new progress in the preparation of rotaxanes, catenanes, and other mechanically interlocked structures assembled via coordination interactions, especially focuses on the examples using metal-mediated coordination interactions as building ways cooperating with host-guest chemistry. Because coordination bonds are easy bonding, dynamically reversible, and easily controllable, the usage of metal-mediated coordination for constructing mechanically interlocked structures can greatly improve the preparation efficiency, and benefit to realizing the reversible regulation of mechanically interlocked structures.

Contents
1 Introduction
2 Self-assembly of rotaxanes via metal-mediated coordination
3 Self-assembly of catenanes via metal-mediated coordination
4 Self-assembly of other mechanically interlocked structures via metal-mediated coordination
5 Conclusion

中图分类号: 

()
[1] (a) 刘育(Liu Y),张衡益(Zhang H Y),李莉(Li L),王浩(Wang H). 纳米超分子化学——从合成受体到功能组装体(Nanoscale Supramolecular Chemistry——From Synthetic Acceptors to Functional Self-Assemblies). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2004; (b) Balzani V, Credi A, Venturi M;马骧(Ma X),田禾(Tian H) 译(Trans.). 分子器件与分子机器:纳米世界的概念和前景 (Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld). 上海:华东理工大学出版社(Shanghai: East China University of Science and Technology Press), 2009.
[2] (a) Lehn J M. Pure Appl. Chem., 1978, 50: 871; (b) Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361; (c) Zhu B, Chen H, Lin W, Ye Y, Wu J, Li S. J. Am. Chem. Soc., 2014, 136: 15126; (d) Zhang D W, Zhao X, Li Z T. Acc. Chem. Res., 2014, 47: 1961; (e) Han Y, Meng Z, Ma Y X, Chen C F. Acc. Chem. Res., 2014, 47: 2026; (f) Hu X Y, Xiao T, Lin C, Huang F, Wang L. Acc. Chem. Res., 2014, 47: 2041; (g) Guo D S, Liu Y. Acc. Chem. Res., 2014, 47: 1925.
[3] (a) Amabilino D B, Stoddart J F. Chem. Rev., 1995, 95: 2725; (b) Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72; (c) Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70; (d) Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddart J F. Acc. Chem. Res., 2011, 44: 903; (e) Coskun A, Spruell J M, Barin G, Dichtel W R, Flood A H, Botros Y Y, Stoddart J F. Chem. Soc. Rev., 2012, 41: 4827; (f) Bruns C J, Stoddart J F. Acc. Chem. Res., 2014, 47: 2186;(g) Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev., 2015, DOI: 10.1021/cr5005869.
[4] (a) Zhang C, Li S, Zhang J, Zhu K, Li N, Huang F. Org. Lett., 2007, 9, 5553; (b) Li S, Liu M, Zhang J, Zheng B, Zhang C, Wen X, Li N, Huang F. Org. Biomol. Chem., 2008, 6: 2103; (c) Li S, Liu M, Zhang J, Zheng B, Wen X, Li N, Huang F. Eur. J. Org. Chem., 2008, 6128; (d) Li S, Zhu K, Zheng B, Wen X, Li N, Huang F. Eur. J. Org. Chem., 2009, 1053; (e) Li S, Liu M, Zheng B, Zhu K, Wang F, Li N, Zhao X L, Huang F. Org. Lett., 2009, 11: 3350; (f) Liu M, Li S, Hu M, Wang F, Huang F.Org. Lett., 2010, 12: 760; (g) 张志君(Zhang Z J),张衡益(Zhang H Y),刘育(Liu Y).高等学校化学学报(Chem. J. Chin. Univ.), 2011, 32: 1913; (h) 周其忠(Zhou Q Z), 何春林(He C L), 翟春熙(Zhai C X), 黄飞鹤(Huang F H), 化学通报(Chemistry), 2008, 809; (i) 孙书(Sun S), 石建兵(Shi J B), 董宇平(Dong Y P), 胡晓玉(Hu X Y), 王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2014, 26: 1409.
[5] (a) Champin B, Mobian P, Sauvage J P. Chem. Soc. Rev., 2007, 36: 358; (b) Beves J E, Blight B A, Campbell C J, Leigh D A, McBurney R T. Angew. Chem. Int. Ed., 2011, 50: 9260; (c) Chambron J C, Sauvage J P. New J. Chem., 2013, 37: 49; (d) 隋锡娜(Sui X N), 鲁晓明(Lu X M). 化学通报(Chemistry), 2007, 494.
[6] (a) 马骧(Ma X), 王巧纯(Wang Q C), 田禾(Tian H). 化学进展(Progress in Chemistry), 2009, 21: 106; (b) 杨再文(Yang Z W), 刘向荣(Liu X R), 赵顺省(Zhao S S), 何金梅(He J M).化学进展(Progress in Chemistry), 2014, 26: 1899; (c) 翁官欢(Weng G H), 朱彬(Zhu B), 叶杨(Ye Y), 李世军(Li S). 有机化学(Chin. J. Org. Chem.), 2015, 35: 309.
[7] (a) Ogino H. J. Am. Chem. Soc., 1981, 103: 1303; (b) Ogino H, Ohata K. Inorg. Chem., 1984, 23: 3312.
[8] (a) Loeb S J, Wisner J A. Chem. Commun., 1998, 2757; (b) Davidson G J E, Loeb S J. Dalton. Trans., 2003, 4319.
[9] Davidson G J E, Loeb S J, Parekh N A, Wisner J A. J. Chem. Soc. Dalton Trans., 2001, 3135.
[10] (a) Ashton P R, Ballardini R, Balzani V, Credi A, Dress K R, Ishow E, Kleverlaan C J, Kocian O, Preece J A, Spencer N, Stoddart J F, Venturi M, Wenger S. Chem. Eur. J., 2000, 6: 3558; (b) Kay E R, Leigh D A. Nature, 2006, 440: 286; (c) Balzani V, Bergamini G, Ceroni P. Coord. Chem. Rev., 2008, 252: 2456.
[11] Hannak B, Farber G, Konrat R, Kräutler B. J. Am. Chem. Soc., 1997, 119: 2313.
[12] Chichak K, Walsh M C, Branda N R. Chem. Commun., 2000, 847.
[13] Gunter M J, Bampos N, Johnstone K D, Sanders J K M. New J. Chem., 2001, 25: 166.
[14] Ikeda T, Asakawa M, Shimizu T. New J. Chem., 2004, 28: 870.
[15] (a) Jeong K S, Choi J S, Chang S Y, Chang H Y. Angew. Chem. Int. Ed., 2000, 112: 175; (b) Jeong K S, Choi J S, Chang S Y, Chang H Y. Angew. Chem. Int. Ed., 2000, 39: 1692.
[16] Hunter C A, Low C M R, Packer M J, Spey S E, Vinter J G, Vysotsky M O, Zonta C. Angew. Chem. Int. Ed., 2001, 113: 2750.
[17] Yoon I, Narita M, Shimizu T, Asakawa M. J. Am. Chem. Soc., 2004, 126: 16740.
[18] (a) Lee C F, Leigh D A, Pritchard R G, Schultz D, Teat S J, Timco G A, Winpenny R E. Nature, 2009, 458: 314; (b) Ballesteros B, Faust, T B, Lee C F, Leigh D A, Muryn C A, Pritchard R G, Schultz D, Teat S J, Timco G A, Winpenny R E P. J. Am. Chem. Soc., 2010, 132: 15435.
[19] Zhao Y Z, Chen Y, Wang M, Liu Y. Org. Lett., 2006, 8: 1267.
[20] Nepogodiev S A, Stoddart J F. Chem. Rev., 1998, 98: 1959.
[21] Fujita M, Aoyagi M, Ibukuro F, Ogura K, Yamaguchi K. J. Am. Chem. Soc., 1998, 120: 611.
[22] Fujita M, Fujita N, Ogura K, Yamaguchi K. Nature, 1999, 400: 52.
[23] Yamauchi Y, Yoshizawa M, Fujita M. J. Am. Chem. Soc., 2008, 130: 5832.
[24] Westcott A, Fisher J, Harding L P, Rizkallah P, Hardie M J. J. Am. Chem. Soc., 2008, 130: 2950.
[25] Fukuda M, Sekiya R, Kuroda R. Angew. Chem. Int. Ed., 2008, 47: 706.
[26] Freye S, Hey J, Galan A T, Stalke D, Irmer R H, John M, Clever G H. Angew. Chem. Int. Ed., 2012, 51: 2191.
[27] (a) Chas M, Pia E, Toba R, Peinador C, Quintela J M. Inorg. Chem., 2006, 45: 6117; (b) Blanco V, Chas M, Abella D, Peinador C, Quintela J M. J. Am. Chem. Soc., 2007, 129: 13978; (c) Blanco V, Garcia M D, Peinador C, Quintela J M. Chem. Sci., 2011, 2: 2407.
[28] Forgan R S, Friedman D C, Stern C L, Bruns C J, Stoddart J F. Chem. Commun., 1998, 2757.
[29] Liu Y, Bruneau A, He J, Abliz Z. Org. Lett., 2008, 10: 765.
[30] Wu J, Fang F, Lu W Y, Hou J L, Li C, Wu Z Q, Jiang X K, Li Z T, Yu Y H. J. Org. Chem., 2011, 76: 4682.
[31] Li S J, Huang J Y, Cook T R, Pollock J B, Kim K, Chi K W, Stang P J. J. Am. Chem. Soc., 2013, 135: 2084.
[32] (a) Whang D M, Park K M, Heo J, Ashton P, Kim K. J. Am. Chem. Soc., 1998, 120: 4899; (b) Park K M, Kim S Y, Heo J, Whang D, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2002, 124: 2140.
[33] Roh S G, Park K M, Park G J, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed., 1999, 38: 637.
[34] Li S J, Huang J Y, Zhou F Y, Cook T R, Yan X Z, Ye Y, Zhu B, Zheng B, Stang P J. J. Am. Chem. Soc., 2014, 136: 5908.
[35] Peinador C, Blanco V, Quintela J M. J. Am. Chem. Soc., 2009, 131: 920.
[36] (a) De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem. Rev., 2009, 109: 5687; (b) Wang F, Zhang J, Ding X, Dong S, Liu M, Zheng B, Li S, Wu L, Yu Y, Gibson H W, Huang F. Angew. Chem. Int. Ed., 2010, 49: 1090; (c) Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41: 1621; (d) Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41: 604; (e) Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41: 5907; (f) Li S L, Xiao T, Lin C, Wang L. Chem. Soc. Rev., 2012, 41: 59508; (g) Dong S, Zheng B, Wang F, Huang F. Acc. Chem. Res., 2014, 47: 1982; (h) 郭明雨(Guo M Y), 江明(Jiang M). 化学进展(Progress in Chemistry), 2007, 19: 557; (i) 杨勇(Yang Y), 窦丹丹(Dou D D).化学进展(Progress in Chemistry), 2014, 26: 706.
[37] (a) Niu Z, Gibson H W. Chem. Rev., 2009, 109: 6024; (b) Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974; (c) Li S, Zheng B, Chen J, Dong S, Ma Z, Huang F, Gibson H W. J. Polym. Sci.: Polym. Chem., 2010, 48: 4067.
[38] (a) Vukotic V N, Loeb S J. Chem. Soc. Rev., 2012, 41: 5896; (b) Yan X, Li S, Pollock B J, Cook T R, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P J. Proc. Natl. Acad. Sci. USA, 2013, 110: 15585; (c) Yan X, Li S, Cook T R, Ji X, Yao Y, Pollock B J, Shi Y, Yu G, Li J, Huang F, Stang P J. J. Am. Chem. Soc., 2013, 135: 14036; (d) Yan X, Cook T R, Pollock B J, Wei P, Zhang Y, Yu Y, Huang F, Stang P J. J. Am. Chem. Soc., 2014, 136: 4460; (e) Li Z Y, Zhang Y, Zhang C W, Chen L J, Wang C, Tan H, Yu Y, Li X, Yang H B. J. Am. Chem. Soc., 2014, 136: 8577; (f) Wei P, Li S, Zhang Y, Yu Y, Yan X. Polym. Chem., 2014, 5: 3972; (g) Tian Y K, Shi Y G, Yang Z S, Wang F. Angew. Chem. Int. Ed., 2014, 53: 6090; (h) Tian Y K, Yang Z S, Lv X Q, Yao R S, Wang F. Chem. Commun., 2014, 50: 9477; (i) Wei P, Yan X, Huang F. Chem. Soc. Rev., 2015, 44: 815.
[39] (a) Liu Y, Zhao Y L, Zhang H Y, Song H B. Angew. Chem. Int. Ed., 2003, 42: 3260; (b) Liu Y, Li L, Zhang H Y, Zhao Y L, Wu X. Macromolecules, 2002, 35: 9934; (c) Liu Y, Song Y, Wang H, Zhang H Y, Li X Q. Macromolecules, 2004, 37: 6370.
[40] Du G, Moulin E, Jouault N, Buhler E, Giuseppone N. Angew. Chem. Int. Ed., 2012, 51: 12504.
[41] Gao L, Zhang Z, Zheng B, Huang F. Polym. Chem., 2014, 5: 5734.
[42] Li S, Weng G H, Lin W, Sun Z B, Zhou M, Zhu B, Ye Y, Wu J. Polym. Chem., 2014, 5: 3994.
[43] Zhu L L, Lu M Q, Zhang Q W, Qu D H, Tian H. Macrmolecules, 2011, 44: 4092.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[8] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[9] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[10] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[13] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[14] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[15] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.