English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1133-1146 DOI: 10.7536/PC150226 前一篇   

• 综述与评论 •

石墨烯气凝胶吸附剂的制备及其在水处理中的应用

孙怡然1, 杨明轩1, 于飞*1,2, 陈君红1, 马杰1   

  1. 1. 同济大学 污染控制与资源化研究国家重点实验室 上海 20009;
    2. 上海应用技术学院 化学与环境工程学院 上海 201418
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 于飞 E-mail:fyu@vip.163.com
  • 基金资助:
    国家自然科学基金项目(No. 21207100, 51408362)资助

Synthesis of Graphene Aerogel Adsorbents and Their Applications in Water Treatment

Sun Yiran1, Yang Mingxuan1, Yu Fei*1,2, Chen Junhong1, Ma Jie1   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 20009;
    2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21207100, 51408362).
石墨烯气凝胶(GA)是以石墨烯为主体的三维互联的多孔网络结构,因其具有优良的结构可控性、极大的比表面积、独特的空间互联结构、良好的电子传输能力成为水处理中应用的理想材料。至今已经有大量制备GA的方法,其性能和结构因制备方法的不同差异很大,但是尚未有文献系统地报道GA的制备机理和不同方法与GA结构及性能之间的联系。本文系统性地介绍GA吸附剂的制备方法与它在水处理中的应用并进行展望。对GA的结构特性尤其是与吸附有关的特性以及结构和吸附之间的关系进行分析,并通过对GA的制备机理和制备过程中的关键因素进行归纳,基于GA的制备机理将其制备方法进行分类(模板法、垫片支撑法、自支撑法、基面法和凝胶法)并对五种方法进行了详细介绍,对目前GA在水处理技术中(吸附、光催化、去离子电容等)去除重金属和有机污染物相关应用和机理进行综述,最后对目前GA在环境中应用中存在的问题及研究前景进行了总结和展望。
Graphene aerogels(GA) are three-dimensional(3D) graphene-based macrostructures with well-defined interconnected porous networks. Their excellent features, including large surface area, controllable porous structure, ability of electronic transmission and unique interconnected networks, make them an ideal material for water treatment. Up to now, there are many fabrication methods for preparing GA which differs in performance and structure. However, their methodology and relationships between different methods, structures and features haven't been reported systematically. This review aims to describe the fabrication methods for preparing GA absorbents as well as their applications in water treatment and perspective. Thus, the structural features of GA, especially those related to adsorption and relationships between structures and adsorption are analyzed. The methodology and key factors in preparing process which have an influence on structures of GA are also summarized. Based on the methodology, the synthesis methods for preparing GA can be classified to five types, namely template method, intercalation method, self-supporting method, substrate-casting method and gelation, which are described and exampled in detail. Applications as well as mechanisms in water treatment, including adsorption of organic pollutants and heavy metals, oil-water separation, photocatalysis and capacitive deionization are systematically reviewed. Finally, the problems in environmental applications and prospects of further research are discussed.

Contents
1 Introduction
2 Structures and adsorptional features of GA
3 Fabrication methods
3.1 Template method
3.2 Intercalation method
3.3 Self-supporting method
3.4 Substrate-casting method
3.5 Gelation
4 Methodology and key factors of preparing GA
5 Applications of GA in water treatment
5.1 Capacitive Deionization
5.2 Adsorption
5.3 Photocatalysis
6 Conclusion

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S , Jiang D, Zhang Y, Dubonos S, Grigorieva I, A. Firsov, Science, 2004, 306: 666.
[2] Du X, Skachko I, Barker A, Andrei E Y. Nature Nanotechnology, 2008, 3: 491.
[3] Balandin A A. Nature Materials, 2011, 10: 569.
[4] Shahil K M, Balandin A A. Solid State Communications, 2012, 152: 1331.
[5] Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K. Nature, 2012, 490: 192.
[6] Rao C N R,Sood A K,Subrahmanyam K S, Govindaraj A. Angewandte Chemie International Edition, 2009, 48: 7752.
[7] Thakur S, Das G, Raul P K, Karak N. Journal of Physical Chemistry C, 2013, 117: 7636.
[8] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Advanced Materials, 2010, 22: 3906.
[9] Kemp K C, Seema H, Saleh M, Le N H, Mahesh K, Chandra V, Kim K S. Nanoscale, 2013, 5: 3149.
[10] Stankovich S, Dikin D A , Piner R D , Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45: 1558.
[11] Han Z, Tang Z H, Li P, Yang G Z, Zheng Q B, Yang J H. Nanoscale, 2013, 5: 5462.
[12] Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Nature Materials, 2011, 10: 424.
[13] Xie X, Yu G, Liu N, Bao Z, Criddle C S, Cui Y. Energy & Environmental Science, 2012, 5: 6862.
[14] Wu X Z, Zhou J, Xing W, Wang G Q, Cui H Y, Zhuo S P, Xue Q Z, Yan Z F, Qiao S Z. Journal of Materials Chemistry, 2012, 22: 23186.
[15] Worsley M A, Pauzauskie P J, Olson T Y, Biener J, Satcher J H Jr, Baumann T F. Journal of the American Chemical Society, 2010, 132: 14067.
[16] Worsley M A, Olson T Y, Lee J R, Willey T M, Nielsen M H, Roberts S K, Pauzauskie P J, Biener J, Satcher J H Jr, Baumann T F. Journal of Physical Chemistry Letters, 2011, 2: 921.
[17] Aliev A E, Oh J Y, Kozlov M E, Kuznetsov A A, Fang S L, Fonseca A F, Ovalle R, Lima M D, Haque M H, Gartstein Y N, Zhang M, Zakhidov A A, Baughman R H. Science, 2009, 323: 1575.
[18] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Advanced Materials, 2013, 25: 2219.
[19] Sehaqui H, Zhou Q, Berglund L A. Composites Science and Technology, 2011, 71: 1593.
[20] Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25: 2554.
[21] Chen W, Li S, Chen C, Yan L. Advanced Materials, 2011, 23: 5679.
[22] Wu Z S, Yang S, Sun Y, Parvez K, Feng X, Müllen K. Journal of the American Chemical Society, 2012, 134: 9082.
[23] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. Journal of Materials Chemistry, 2011, 21: 6494.
[24] Ren L, Hui K S, Hui K N. Journal of Materials Chemistry A, 2013, 1: 5689.
[25] Zhang J, Zhao F, Zhang Z, Chen N, Qu L. Nanoscale, 2013, 5: 3112.
[26] Jiang L, Fan Z. Nanoscale, 2014, 6: 1922.
[27] Nardecchia S, Carriazo D, Ferrer M L, Gutiérrez M C, del Monte F. Chemical Society Reviews, 2013, 42: 794.
[28] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385.
[29] Lv W, Zhang C, Li Z, Yang Q H. Journal of Physical Chemistry Letters, 2015, 6: 658.
[30] Jo H, Noh H, Kaviany M, Kim J M, Kim M H, Ahn H S. Carbon, 2015, 81: 357.
[31] Zhang L, Zhang F, Yang X, Long G, Wu Y, Zhang T, Leng K, Huang Y, Ma Y, Yu A. Scientific Reports, 2013, 3: 1408.
[32] Huang X, Sun B, Su D, Zhao D, Wang G. Journal of Materials Chemistry A, 2014, 2: 7973.
[33] Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25: 2554.
[34] Dasgupta S, Wang D, Kübel C, Hahn H, Baumann T F, Biener J. Advanced Functional Materials, 2014, 24: 3473.
[35] Kim H J, Randriamahazaka H, Oh I K. Small, 2014, 10: 4985.
[36] Li Y, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K. Scientific reports, 2014, 4: 4652.
[37] Wang C, Su K, Wan W, Guo H, Zhou H, Chen J, Zhang X, Huang Y. Journal of Materials Chemistry A, 2014, 2: 5018.
[38] Yu X, Lu B, Xu Z. Advanced Materials, 2014, 26: 1044.
[39] Estevinho B N, Martins I, Ratola N, Alves A, Santos L. Journal of hazardous materials, 2007, 143: 535.
[40] Chen K, Liu F, Song S, Xue D. CrystEngComm, 2014, 16: 7771.
[41] Liu F, Song S, Xue D, Zhang H. Advanced Materials, 2012, 24: 1089.
[42] Cong H P, Ren X C, Wang P, Yu S H. ACS Nano, 2012, 6: 2693.
[43] Fan Z, Tng D Z Y, Lim C X T, Liu P, Nguyen S T, Xiao P, Marconnet A, Lim C Y, Duong H M. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445: 48.
[44] Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong V T, Li D. Advanced Materials, 2014, 26: 3333.
[45] Chi C, Zhang K, Wang Y, Zhang S, Liu X, Liu X, Zhao J, Li Y. Materials Science and Engineering: B, 2015,194: 62.
[46] Kabiri S, Tran D N, Altalhi T, Losic D. Carbon, 2014, 80: 523.
[47] Vinod S, Tiwary C S, da Silva Autreto P A, Taha-Tijerina J, Ozden S, Chipara A C, Vajtai R, Galvao D S, Narayanan T N, Ajayan P M. Nature Communications, 2014, 5: 4541.
[48] Zhi J, Zhao W, Liu X, Chen A, Liu Z, Huang F. Advanced Functional Materials, 2014, 24: 2013.
[49] Min B H , Kim D W , Kim K H , Choi H O , Jang S W, Jung H T. Carbon, 2014, 80: 446.
[50] Yong Y C, Dong X C, Chan-Park M B, Song H, Chen P. ACS Nano, 2012, 6: 2394.
[51] Batzill M. Surface Science Reports, 2012, 67: 83.
[52] Pettes M T, Ji H, Ruoff R S, Shi L. Nano Letters, 2012, 12: 2959.
[53] Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H. Small, 2011, 7: 3163.
[54] Choi B G , Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6: 4020.
[55] Yang Z Y, Jin L J, Lu G Q, Xiao Q Q, Zhang Y X, Jing L, Zhang X X, Yan Y M, Sun K N. Advanced Functional Materials, 2014, 24: 3917.
[56] Vickery J L, Patil A J, Mann S. Advanced Materials, 2009, 21: 2180.
[57] Serrano M C, Patiño J, García-Rama C, Ferrer M L, Fierro J, Tamayo A, Collazos-Castro J E, del Monte F, Gutierrez M C. Journal of Materials Chemistry B, 2014, 2: 5698.
[58] Estevez L, Kelarakis A, Gong Q, Da'as E H, Giannelis E P. Journal of the American Chemical Society, 2011, 133: 6122.
[59] Sun H, Cao L, Lu L. Energy & Environmental Science, 2012, 5: 6206.
[60] Yang X, Zhu J, Qiu L, Li D. Advanced Materials, 2011, 23: 2833.
[61] Burress J W, Gadipelli S, Ford J, Simmons J M, Zhou W, Yildirim T. Angewandte Chemie International Edition, 2010, 49: 8902.
[62] Jahan M, Bao Q, Loh K P. Journal of the American Chemical Society, 2012, 134: 6707.
[63] Li R, Chen C, Li J, Xu L, Xiao G, Yan D. Journal of Materials Chemistry A, 2014, 2: 3057.
[64] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Letters, 2012, 12: 1806.
[65] Zhu Y, Murali S, Stoller M D, Ganesh K, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332: 1537.
[66] Liu F, Seo T S. Advanced Functional Materials, 2010, 20: 1930.
[67] Niu Z, Chen J, Hng H H, Ma J, Chen X. Advanced Materials, 2012, 24: 4144.
[68] Tang H, Tu J P, Liu X Y, Zhang Y J, Huang S, Li W Z, Wang X L, Gu C D. J. Mater. Chem. A, 2014, 2: 5834.
[69] Yin S, Goldovsky Y, Herzberg M, Liu L, Sun H, Zhang Y, Meng F, Cao X, Sun D D, Chen H. Advanced Functional Materials, 2013, 23: 2972.
[70] Lee S H, Kim H W, Hwang J O, Lee W J, Kwon J, Bielawski C W, Ruoff R S, Kim S O. Angewandte Chemie International Edition, 2010, 49: 10084.
[71] Yin S, Zhang Y, Kong J, Zou C, Li C M, Lu X, Ma J, Boey F Y C, Chen X. ACS Nano, 2011, 5: 3831.
[72] Korkut S, Roy-Mayhew J D, Dabbs D M, Milius D L, Aksay I A. ACS Nano, 2011, 5: 5214.
[73] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4: 7358.
[74] Huang C, Bai H, Li C, Shi G. Chemical Communications, 2011, 47: 4962.
[75] Menzel R, Barg S, Miranda M, Anthony D B, Bawaked S M, Mokhtar M, Al-Thabaiti S A, Basahel S N, Saiz E, Shaffer M S. Advanced Functional Materials, 2015, 25: 1.
[76] Song X, Lin L, Rong M, Wang Y, Xie Z, Chen X. Carbon, 2014, 80: 174.
[77] Bai H, Li C, Wang X, Shi G. Chemical Communications, 2010, 46: 2376.
[78] Fang Q, Chen B. Journal of Materials Chemistry A, 2014, 2: 8941.
[79] Bai H, Li C, Wang X, Shi G. Journal of Physical Chemistry C, 2011, 115: 5545.
[80] Compton O C, An Z, Putz K W, Hong B J, Hauser B G, Catherine Brinson L, Nguyen S T. Carbon, 2012, 50: 3399.
[81] Qiu B, Xing M, Zhang J. Journal of the American Chemical Society, 2014, 136: 5852.
[82] Liang J, Cai Z, Li L, Guo L, Geng J. RSC Advances, 2014, 4: 4843.
[83] Tang Z, Shen S, Zhuang J, Wang X. Angewandte Chemie International Edition Engl, 2010, 49: 4603.
[84] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4: 4324.
[85] Sheng K X, Xu Y X, Li C, Shi G Q. New Carbon Materials, 2011, 26: 9.
[86] Zhang L, Chen G, Hedhili M N, Zhang H, Wang P. Nanoscale, 2012, 4: 7038.
[87] Zu S Z, Han B H. Journal of Physical Chemistry C, 2009, 113: 13651.
[88] Sun S, Wu P. Journal of Materials Chemistry, 2011, 21: 4095.
[89] Kundu P, Nethravathi C, Deshpande P A, Rajamathi M, Madras G, Ravishankar N. Chemistry of Materials, 2011, 23: 2772.
[90] Sun Y, Wu Q, Shi G. Energy & Environmental Science, 2011, 4: 1113.
[91] Wang R, Xu C, Sun J, Gao L. Scientific Reports, 2014, 4: 7171.
[92] Qian Y, Ismail I M, Stein A. Carbon, 2014, 68: 221.
[93] Han W, Ren L, Gong L, Qi X, Liu Y, Yang L, Wei X, Zhong J. ACS Sustainable Chemistry & Engineering, 2014, 2: 741.
[94] Whitby R L. ACS Nano, 2014, 8: 9733.
[95] Qin S Y, Liu X J, Zhuo R X, Zhang X Z. Macromolecular Chemistry and Physics, 2012, 213: 2044.
[96] Bai H, Li C, Wang X, Shi G. Chemical Communications, 2010, 46: 2376.
[97] Bao L, Zang J, Li X. Nano letters, 2011, 11: 1215.
[98] Tang Z, Shen S, Zhuang J, Wang X. Angewandte Chemie International Edition, 2010, 122: 4707.
[99] Su D. Chemical Communications, 2012, 48: 7149.
[100] Pei S, Cheng H M. Carbon, 2012, 50: 3210.
[101] Tao Y, Xie X, Lv W, Tang D M, Kong D, Huang Z, Nishihara H, Ishii T, Li B, Golberg D. Scientific Reports, 2013, 3: 2975.
[102] Shen T Z, Hong S H, Song J K. Nature Materials, 2014, 13: 394.
[103] Bi H, Yin K, Xie X, Zhou Y, Wan N, Xu F, Banhart F, Sun L, Ruoff R S. Advanced Materials, 2012, 24: 5124.
[104] Xie X, Zhou Y, Bi H, Yin K, Wan S, Sun L. Scientific Reports, 2013, 3: 2117.
[105] Dong Q, Wang G, Qian B, Hu C, Wang Y, Qiu J. Electrochimica Acta, 2014, 137: 388.
[106] Sui Z, Meng Q, Zhang X, Ma R, Cao B. Journal of Materials Chemistry, 2012, 22: 8767.
[107] Worsley M A, Pham T T, Yan A, Shin S J, Lee J R, Bagge-Hansen M, Mickelson W, Zettl A. ACS Nano, 2014, 8: 11013.
[108] Wen X, Zhang D, Yan T, Zhang J, Shi L. Journal of Materials Chemistry A, 2013, 1: 12334.
[109] Wang H, Zhang D, Yan T, Wen X, Zhang J, Shi L, Zhong Q, Journal of Materials Chemistry A, 2013, 1: 11778.
[110] Yin H, Zhao S, Wan J, Tang H, Chang L, He L, Zhao H, Gao Y, Tang Z. Advanced Materials, 2013, 25: 6270.
[111] Liu Y, Nie C, Pan L, Xu X, Sun Z, Chua D H C. Inorganic Chemistry Frontiers, 2014, 1: 249.
[112] Wimalasiri Y, Mossad M, Zou L. Desalination, 2015, 357: 178.
[113] Zhao L, Yu B, Xue F, Xie J, Zhang X, Wu R, Wang R, Hu Z, Yang S T, Luo J. Journal of Hazardous materials, 2015, 286C: 449.
[114] Li L, Zhou G, Weng Z, Shan X Y, Li F, Cheng H M. Carbon, 2014, 67: 500.
[115] Zhang F, Wang B, He S, Man R. Journal of Chemical & Engineering Data, 2014, 59: 1719.
[116] Han Z, Tang Z, Shen S, Zhao B, Zheng G, Yang J. Scientific Reports, 2014, 4: 5025.
[117] Wu S, Zhang K, Wang X, Jia Y, Sun B, Luo T, Meng F, Jin Z, Lin D, Shen W, Kong L, Liu J. Chemical Engineering Journal, 2015, 262: 1292.
[118] Wang J, Shi Z, Fan J, Ge Y, Yin J, Hu G. Journal of Materials Chemistry, 2012, 22: 22459.
[119] Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L. Angewandte Chemie International Edition, 2012, 124: 11533.
[120] Martín-Jimeno F J, Suárez-García F, Paredes J I, Martínez-Alonso A, Tascón J M D. Carbon, 2015, 81: 137.
[121] Ma T, Chang P R, Zheng P, Zhao F, Ma X. Chemical Engineering Journal, 2014, 240: 595.
[122] Nardecchia S, Carriazo D, Ferrer M L, Gutierrez M C, del Monte F. Chem.Soc. Rev., 2013, 42:794.
[123] Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J. Journal of Materials Chemistry A, 2013, 1: 7612.
[124] Zhao Z, Wang X, Qiu J, Lin J, Xu D, Zhang C, Lv M, Yang X. Reviews on Advanced Materials Science, 2014, 36: 137
[125] Chi C, Xu H, Zhang K, Wang Y, Zhang S, Liu X, Liu X, Zhao J, Li Y. Materials Science and Engineering: B, 2015, 194: 62.
[126] Kabiri S, Tran D N H, Altalhi T, Losic D. Carbon, 2014, 80: 523.
[127] Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L. ACS Nano, 2010, 5: 590.
[128] Liu W, Cai J, Li Z. ACS Sustainable Chemistry & Engineering, 2015,3: 277.
[129] Li X, Yang S, Sun J, He P, Xu X, Ding G. Carbon, 2014, 78: 38.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[15] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.