English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 744-754 DOI: 10.7536/PC150224 前一篇   后一篇

• 超分子化学专辑 •

有机模板协助构建的动态共价大环

黄国保1,2, 蒋伟*2   

  1. 1. 华南师范大学化学与环境学院 广州 511400;
    2. 南方科技大学化学系 深圳 518055
  • 收稿日期:2015-02-01 修回日期:2015-03-01 出版日期:2015-06-15 发布日期:2015-03-16
  • 通讯作者: 蒋伟 E-mail:jiangw@sustc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21302090)资助

Dynamic Covalent Macrocycles Constructed via Organic Templates

Huang Guobao1,2, Jiang Wei*2   

  1. 1. School of Chemistry and Environment, South China Normal University, Guangzhou 511400, China;
    2. Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
  • Received:2015-02-01 Revised:2015-03-01 Online:2015-06-15 Published:2015-03-16
  • Contact: 10.7536/PC150224 E-mail:jiangw@sustc.edu.cn
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21302090).
本文详细综述了有机模板协助而形成的动态共价大环。有机模板具有比金属离子更大的尺寸,因此可以诱导形成具有较大尺寸的大环结构。同时,有机模板结构具有多样性,可以通过化学反应进行按需修饰。可逆共价键有很多种,在模板诱导下形成大环结构的主要有三类:硫硫键、硼酸酯和希夫碱。硫硫键和硼酸酯的动态可逆性可以通过改变外界条件来开关。而希夫碱则可以通过还原转化为动力学稳定的共价键。因此,这类模板诱导而形成的热力学稳定大环可以转化为相应的动力学稳定大环,为大环主体的合成提供了一个新的途径。此外,动态共价大环的主客体键合模块还可以被用来构建更加复杂的超分子结构,例如轮烷和锁烃等。
Dynamic covalent macrocycles templated by organic molecules have been thoroughly reviewed. Organic templates have much larger sizes than metal ions, and therefore are suitable to template the formation of macrocycles with much larger cavity. Meanwhile, there are a variety of organic molecules, which may work as templates. Their structures can be tailor-made through various organic reactions. Out of many dynamic covalent bonds, there are three popular types which are often used to construct dynamic covalent macrocycles via template effect: disulfide, boronic ester, and imine. The reversibility of former two bonds can be switched on or off through changing the conditions. While imine bonds can be reduced to kinetically inert chemical bonds. Thus, the thermodynamically stable macrocycles in the presence of templates can be converted to the corresponding kinetically inert macrocycles, providing a new method for the preparation of macrocyclic hosts. In addition, the host-guest binding motifs based on dynamic covalent macrocycles can be used to construct more complex supramolecular architectures, for example, rotaxanes and catenanes.

Contents
1 Introduction
2 Constructions of dynamic covalent macrocycles
2.1 Dynamic covalent macrocycles based on S-S bond
2.2 Dynamic covalent macrocycles based on boronic ester
2.3 Dynamic covalent macrocycles based on Schiff's base
3 Complex architectures based on dynamic covalent macrocycles
3.1 Rotaxanes based on dynamic covalent macrocycles
3.2 Catenane based on dynamic covalent macrocycles
4 Conclusion

中图分类号: 

()
[1] a) 刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry——molecular recognition and self-assembly of synthetic receptors). 天津: 南开大学出版社(Tianjin: Nankai university press), 2003.; b) 罗勤慧(Luo Q H). 大环化学——主-客体化合物和超分子(Macrocyclic Chemistry —— Host-Guest Compound and Supramolecular). 北京: 科学出版社(Beijing: Science Press), 2009. 294.
[2] Pedersen C J. J. Am. Chem. Soc., 1967, 89: 7017.
[3] a) Zhang Z J, Zhang H Y, Liu Y. Chem. J. Chin. Universities. 2011, 9: 1913.; b) Wang F, Dong S Y, Zheng B, Huang F H. Acta. Polym. Sin., 2011, 9: 956.; c) Zheng B, Wang F, Dong S Y, Huang F H. Chem. Soc. Rev., 2012, 5: 1621.; d) Zhang Y M, Wang Z, Chen L, Song H B, Liu Y, J. Phys. Chem. B, 2014, 118: 2433.; e) Cheng H B, Zhang H Y, Liu Y. J. Am. Chem. Soc., 2013, 135: 10190.; f) Zhang Z J, Zhang H Y, Wang H, Liu Y. Angew. Chem. Int. Ed., 2011, 50: 10834.
[4] a) Liu Y, Chen Y. Acc. Chem. Res., 2006, 10: 681.; b) Chen Y, Liu Y. Chem. Soc. Rev., 2010, 2: 495.; c) Chen Y, Liu Y. Chinese. J. Org. Chem., 2012, 5: 805.; d) Chen Y, Zhang Y M, Liu Y. Israel J. Chem., 2011, 5/6: 515.; e) Chen G S, Jiang M. Chem. Soc. Rev., 2011, 40: 2254.
[5] a) Guo D S, Wang K, Liu Y. J. Incl. Phenom. Macro., 2008, 1/2: 1.; b) Guo D S, Chen K, Zhang H Q, Liu Y. Chem. Asian J., 2009, 3: 1861.; c) Guo D S, Liu Y. Chem. Soc. Rev., 2012, 18: 5907.; d) Guo D S, Liu Y. Acc. Chem. Res., 2014, 7: 1925.; e) Song M M, Sun Z Y, Han C P, Tian D M, Kim J S, Li H B. Chem. Asian J. 2014, 9: 2344(invited review).; f) Zhang X Y, Zhao H Y, Tian D M, Deng H T, Li H B. Chem. Eur. J. 2014, 20: 9367.; g) Miao F J, Zhou J, Tian D M, Li H B. Org. Lett. 2012, 14: 3572.; h) Feng N M, Zhao, H Y, Tian, D M, Li H B. Org. Lett. 2012, 14: 1958.
[6] Wang K, Guo D S, Zhang H Q, Li D, Zheng X L, Liu Y. J. Med. Chem., 2009, 52: 6402.
[7] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134: 10244.
[8] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122: 540.
[9] Ma D, Hettiarachchi G, Nguyen D, Zhang B, Wittenberg J B, Zavalij P Y, Briken V, Isaacs L. Nat. Chem., 2012, 4: 503.
[10] a) Chen Y, Zhang Y M, Liu Y. Isr. J. Chem., 2011, 51: 515.; b) Liu K, Liu Y L, Yao Y X, Yuan H X, Wang S, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2013, 52: 8285.
[11] a) Xue M, Yang Y, Chi X D, Zhang Z B, Huang F H. Acc. Chem. Res., 2012, 8: 1294.; b) Cao D R, Meier H. Asian J. Org. Chem., 2014, 3: 244.; c) Cragg P J, Sharma K. Chem. Soc. Rev., 2012, 41: 597.; d) Ogoshi T, Yamagishi T A. Eur. J. Org. Chem., 2013, 15: 2961.; e) Zhang H, Zhao Y, Chem. Eur. J., 2013, 19: 16862.; f) Strutt N L, Zhang H, Schneebeli S T, Stoddart J F. Acc. Chem. Res., 2014, 47: 2631.; g) Li C. Chem. Commun., 2014, 50: 12420.; h) Xia, M C, Yang Y W. Prog. Chem., 2015, DOI: 10.7536/pc 141231(In Chinese).
[12] a) Wang M X. Chem. Commun., 2008, 4541.; b) Guo Q H, Fu Z D, Zhao L, Wang M X. Angew. Chem. Int. Ed., 2014, 53: 13548.; c) Wang M X. Acc. Chem. Res., 2012, 45: 182
[13] Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li C. Chem. Sci., 2015, 6: 197.
[14] a) Tian X H, Chen C F. Org. Lett., 2010, 12: 524.; b) Xue M, Chen C F. Org. Lett., 2009, 11: 5294.
[15] Wang J H, Feng H T, Zheng Y S. Chem. Commun., 2014, 50: 11407.
[16] a) Chun Y, Singh N J, Hwang I C, Lee J W, Yu S U, Kim K S. Nat. Commun., 2013, 4: 1797.; b) Zhou H J, Zhao Y S, Gao G, Li S Q, Lan J B, You J S. J. Am. Chem. Soc., 2013, 135: 14908.
[17] Lee S, Chen C H, Flood A H. Nat. Chem., 2013, 5: 704.
[18] Tan L L, Li H, Tao Y, Zhang S X A, Wang B, Yang Y W. Adv. Mater., 2014, 26: 7027.
[19] a) Si W, Chen L, Hu X B, Tang G F, Chen Z X, Hou J L, Li Z T. Angew. Chem. Int. Ed., 2011, 50: 12564.; b) Si W, Li Z T, Hou J L. Angew. Chem. Int. Ed., 2014, 53: 4578.
[20] Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F H. J. Am. Chem. Soc., 2013, 135: 10310.
[21] a) Cao Y, Hu X Y, Li Y, Zou X C, Xiong S H, Lin C, Shen Y Z, Wang L Y. J. Am. Chem. Soc., 2014, 136: 10762.; b) Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013,135: 10542.; c) Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z. Angew. Chem. Int. Ed., 2014, 53: 13126.
[22] a) Hu X Y, Wu X, Duan Q P, Lin C, Wang L Y. Org. Lett., 2012,14: 4826.; b) Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F. Angew. Chem. Int. Ed., 2011, 50: 1397.; c) Xu J F, Chen Y Z, Wu L Z, Tung C H, Yang Q Z. Org. Lett.,2013, 15: 6148.; d) Wang X Y, Han K, Li J, Jia X S, Li C J. Polym. Chem., 2013, 4: 3998.
[23] Curry J D, Busch D H. J. Am. Chem. Soc., 1964, 86: 592.
[24] Otto S, Furlan R L E, Sanders J K M. J. Am. Chem. Soc., 2000, 122: 12063.
[25] a) Otto S, Furlan R L E, Sanders J K M. Science, 2002, 297: 590.; b) Brisig B, Sanders J K M, Otto S. Angew. Chem. Int. Ed., 2003, 42: 1270.
[26] Corbett P T, Tong L H, Sanders J K, Otto S. J. Am. Chem. Soc., 2005, 127: 8902.
[27] a) Corbett P T, Sanders J K, Otto S. J. Am. Chem. Soc., 2005, 127: 9390.; b) West K R, Ludlow R F, Corbett P T, Besenius P, Mansfeld F M, Cormack P A G, Sherrington D C, Goodman J M, Stuart M C A, Otto S. J. Am. Chem. Soc., 2008, 130: 10834.
[28] Vial L, Ludlow R F, Leclaire J, Ruth P F, Otto S. J. Am. Chem. Soc., 2006, 128: 10253.
[29] a) Iwasawa N, Takahagi H. J. Am. Chem. Soc., 2007, 129: 7754.; b) Takahagi H, Iwasawa N. Chem. Eur. J., 2010, 16: 13680.
[30] Takahagi H, Fujibe S, Iwasawa N. Chem. Eur. J., 2009, 15: 13327.
[31] Ito S, Takata H, Ono K, Iwasawa N. Angew. Chem. Int. Ed., 2013, 52: 11045.
[32] Lin J B, Xu X N, Jiang X K, Li Z T. J. Org. Chem. 2008, 73: 9403.
[33] He Z F, Ye G, Jiang W, Chem. Eur. J., 2015, 21: 3005.
[34] Glink P T, Oliva A I, Stoddart J F, White A J P, Williams D J. Angew. Chem. Int. Ed., 2001, 40: 1870.
[35] Aricó F, Chang T, Cantrill S J, Khan S I, Stoddart J F. Chem. Eur. J., 2005, 11: 4655.
[36] Horn M, Ihringer J, Glink P T, Stoddart J F. Chem. Eur. J., 2003, 9: 4046.
[37] Leung K C F, Aricoó F, Cantrill S J, Stoddart J F. J. Am. Chem. Soc., 2005, 127: 5808.
[38] Leung K C F, Aricoó F, Cantrill S J, Stoddart J F. Macromolecules, 2007, 40: 3951.
[39] Wu J H, Leung K C F, Stoddart J F. PNAS., 2007, 104, 44: 17266.
[40] Avestro A J, Gardner D M, Vermeulen N A, Wilson E A, Schneebeli S T, Whalley A C, Belowich M E, Carmieli R, Wasielewski M R, Stoddart J F. Angew. Chem. Int. Ed., 2014, 53: 4442.
[41] a) Lehn J M. Science, 1985, 227: 849.; b) An H, Bradshaw J S, Izatt R M. Chem. Rev., 1992, 92: 543.
[42] a) Bryant W S, Jones J W, Mason P E, Guzei I, Rheingold A L, Fronczek F R, Nagvekar D S, Gibson H W, Org. Lett. 1999, 1: 1001.; b) Huang F H, Fronczek F R, Gibson H W. J. Am. Chem. Soc. 2003, 125: 9272.; c) Huang F H, Gibson H W, Brant W S, Magvekar D S, Fronczek F R. J. Am. Chem. Soc. 2003, 125: 9367.; d) Zhang J, Huang F H, Li N, Gibson H W, Gantzel P, Rheigold A L. J. Org. Chem. 2007, 72: 8935.; e) Pederson A M P, Vetor R C, Rouser M A, Huang F H, Slebodnick C, Schoonover D V, Gibson H W. J. Org. Chem. 2008, 73: 5570.
[43] a) Klivansky L M, Koshkakaryan G, Cao D, Liu Y. Angew. Chem. Int. Ed., 2009, 48: 4185.; b) Pun A, Hanifiv D A, Kiel G, Brien E O, Liu Y. Angew. Chem. Int. Ed., 2012, 51: 13119.
[44] Cantrill S J, Rowan S J, Stoddart J F. Org. Lett., 1999, 1: 1363.
[45] Rowan S J, Stoddart J F. Org. Lett., 1999, 1: 1913.
[46] a) Odell B, Reddington M V, Slawin A M Z, Spencer N, Stoddart J F, Williams D J. Angew. Chem. Int. Ed., 1988, 27: 1547.; b) Brown C L, Philp D, Stoddart J F. Syn.Lett., 1991, 462.; c) Brown C L, Philp D, Spencer N, Stoddart J F. Isr. J. Chem., 1992, 32: 61.
[47] Koshkakaryan G, Cao D, Klivansky L M, Teat S J, Tran J L, Liu Y. Org. Lett., 2010, 12: 1528.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[13] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[14] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[15] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.