English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1251-1259 DOI: 10.7536/PC150212 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

碳纳米管固定化酶

万晓梅, 张川, 余定华, 黄和, 胡燚*   

  1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 210009
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 胡燚 E-mail:huyi@njtech.edu.cn
  • 基金资助:
    国家高技术研究发展计划(No.2011AA02A209)和国家杰出青年科学基金项目(No. 21225626)资助

Enzyme Immobilized on Carbon Nanotubes

Wan Xiaomei, Zhang Chuan, Yu Dinghua, Huang He, Hu Yi*   

  1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National High Technology Research and Development of China (No.2011AA02A209) and the National Science Foundation for Distinguished Young Scholars of China (No. 21225626).
在固定化酶技术中,载体材料的选择至关重要,碳纳米管作为一种新型高效的酶固定化载体,具有较大的比表面积、有序的纳米孔道结构、良好的力学/电学/热学性能、突出的化学稳定性、生物相容性和可控的表面官能化修饰等优良特性,应用日益广泛。本文重点介绍了水解酶、氧化还原酶等具有重要工业应用价值的酶在碳纳米管上的固定化研究现状,探讨了载体的表面修饰和固定化方式对固定化酶的酶学性质的影响,并对碳纳米管固定化酶的发展前景进行了展望。
In the technology of enzyme immobilization, the choice of carrier material is very important for the catalytic performance of enzyme. As a new type of high efficient enzyme immobilization carrier with larger specific surface area, ordered nano pore structure, good mechanical/electrical/thermal performance, outstanding chemical stability, biocompatibility and controllable surface functional modifications, carbon nanotubes are used more and more extensively. The recent research progress of enzyme immobilization on carbon nanotubes is reviewed in this paper, focusing on the immobilization of hydrolases and oxido-reductases, which have important industrial application value. The influence of surface modification of carrier and immobilizationmethods on the catalytic properties of immobilized enzymes is introduced. The outlook of potential applications of enzyme immobilization on carbon nanotubes is also prospected.

Contents
1 Introduction
2 Research of enzyme immobilization on carbon nanotubes
2.1 Hydrolase immobilization on carbon nanotubes
2.2 Oxido-reductase immobilization on carbon nanotubes
2.3 Other kinds of enzymes immobilization on carbon nanotubes
2.4 The application of immobilized enzymes in the biosensors
3 Conclusions

中图分类号: 

()
[1] Kohler V, Tumer N J. Chem. Commun., 2015, 51(3): 450.
[2] Reetz M T. J. Am. Chem. Soc., 2013, 135(34): 12480.
[3] Zheng G W, Xu J H. Curr. Opin. Biotechnol., 2011, 22(6): 784.
[4] DiCosimo R, McAuliffe J, Poulose A J, Bohlmann G. Chem. Soc. Rev., 2013, 42(15): 6437.
[5] Sheldon R A, Sander V P. Chem. Soc. Rev., 2013, 42(15): 6223.
[6] Carlsson N, Gustafsson H, Thorn C, Olsson L, Holmberg K, Akerman B. Adv. Colloid Interface Sci., 2014, 205: 339.
[7] Zhou Z, Hartmann M. Chem. Soc. Rev., 2013, 42(9): 3894.
[8] Min K, Yoo Y J. Biotechnol. Bioproc. Eng., 2014, 19(4): 553.
[9] Mehra N K, Mishra V, Jain N K. Biomaterials, 2014, 35(4): 1267.
[10] Valentini F, Carbone M, Palleschi G. Anal. Bioanal. Chem., 2013, 405(2/3): 451.
[11] Ding Y, Huang H, Hu Y. Chin. J. Org. Chem., 2013, 33(5): 905.
[12] Adlercreutz P. Chem. Soc. Rev., 2013, 42(15): 6406.
[13] Verma M L, Naebe M, Barrow C J, Puri M. PLoS One, 2013, 8(9): 1.
[14] Rastian Z, Khodadadi A A, Vahabzadeh F, Bortolini C, Dong M D, Mortazavi Y, Mogharei A, Naseh M V, Guo Z. Biochem. Eng. J., 2014, 90: 16.
[15] Lee S H, Doan T T N, Won K, Ha S H, Koo Y M. J. Mol. Catal. B: Enzym., 2010, 62(2): 169.
[16] Raghavendra T, Vahora U, Shah A R, Madamwar D. Biotechnol. Prog., 2014, 30(4): 828.
[17] Tan H S, Feng W, Ji P J. Bioresour. Technol., 2012, 115: 172.
[18] Ji P J, Tan H S, Xu X, Feng W. Bioeng. Food Nat. Prod., 2010, 56: 3005.
[19] Ke C X, Li X, Huang S S, Xu L, Yan Y J. RSC Adv., 2014, 4(101): 57810.
[20] Li L L, Feng W, Pan K H. Colloids Surf. B., 2013, 102: 124.
[21] Lee H K, Lee J K, Kim M J, Lee C J. Bull. Korean Chem. Soc., 2010, 31(3): 650.
[22] Shen E, Qu Y Y, Zhou H, Kong C L, Ma Q, Zhang X W, Zhou J T. Chin. J. Catal., 2013, (34): 723.
[23] Tiwari A, Dhakate S R. Int. J. Biol. Macromol., 2009, 44(5): 408.
[24] Zhao G H, Li Y F, Wang J Z, Zhu H. Appl. Microbiol. Biotechnol., 2011, 91(3): 591.
[25] Gòmez J M, Romero M D, Fernández T M. Catal. Lett., 2005, 101(3/4): 275.
[26] Mohiuddin M, Arbain D, Islam A K M S, Rahman M, Ahmad M S, Ahmad M N. Curr. Nanosci., 2014, 10(5): 730.
[27] Ansari S A, Satar R, Chibber S, Khan M J. J. Mol. Catal. B: Enzym., 2013, 97: 258.
[28] Garlet T B, Weber C T, Klaic R, Foletto E L, Jahn S L, Mazutti M A, Kuhn R C. Molecules, 2014, 19(9): 14615.
[29] Feng W, Sun X C, Ji P J. Soft Matter, 2012, 8(27): 7143.
[30] Sun J, Du K, Fu L, Gao J, Zhang H Y, Feng W, Ji P J. Appl. Mater. Interfaces., 2014, 6(17): 15132.
[31] Muthurasu A, Ganesh V. Appl. Biochem. Biotechnol., 2014, 174(3): 945.
[32] 毛新焕(MaoX H), 李响(Li X), 王姗姗( Wang S S), 张文静(Zhang W J), 曾成鸣(Zeng C M).生物工程学报(Chin. J. Biotech.), 2009, 25 ( 3 ): 388.
[33] Kim B J, Kang B K, Bahk Y Y, Yoo K H, Lim K J. Curr. Appl. Phys., 2009, 9(4): E263.
[34] Li Y, Huang X R, Qu Y B. J. Chem. Technol. Biotechnol., 2013, 88(12): 2227.
[35] Lee Y M, Kwon O Y, Yoon Y J, Ryu1 K. Biotechnol. Lett., 2006, 28(1): 39.
[36] 唐艳(Tang Y), 石鑫(Shi X), 冯春梁(Liang C L). 中国材料科技与设备(Chin. Mater. Sci. Technol. Equip.), 2011, 7(2): 15.
[37] 卿三红(Qing S H), 方柏山(Fang B S). 华侨大学学报(自然科学版)(Journal of Huaqiao University(Natural Science)), 2011, 32(5): 554.
[38] Wang L A, Wei L, Chen Y A, Jiang R R. J. Biotechnol., 2010, 150(1): 57.
[39] Wang L A, Xu R, Chen Y A, Jiang R R. J. Mol. Catal. B: Enzym., 2011, 69(3/4): 120.
[40] Couto S R, Herrera J L T. Biotechnol. Adv., 2006, 24 (5): 500.
[41] Trohalaki S, Pachter R, Luckarift H R, Johnson G R. Fuel Cells, 2012, 12(4): 656.
[42] Pang R, Li M Z, Zhang C D. Talanta, 2015, 131: 38.
[43] Dubey K K, Narayan A, Kumar D, Kumar P. J. Comput. Thero. Nanos., 2014, 11(8): 1812.
[44] Quan J, Liu Z Q, Branford-White C, Nie H L, Zhu L M. Colloids Surf. B, 2014, 121: 417.
[45] Zhang C D, Luo S M, Chen W. Talanta, 2013, 113: 142.
[46] Tiwari A. J. Inorg. Organomet. Polym., 2009, 19(3): 361.
[47] Mubarak N M, Wong J R, Tan K W, Sahu J N, Abdullah E C, Jayakumar N S, Ganesane P. J. Mol. Catal. B: Enzym., 2014, 107: 124.
[48] Subrizi F, Crucianelli M, Grossi V, Passacantando M, Botta G,Antiochia R, Saladino R. ACS Catal., 2014, 4(9): 3059.
[49] Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R. ACS Catal., 2014, 4(3): 810.
[50] Zhu L, Xu L L, Tan L, Tan H, Yang S F, Yao S Z. Talanta, 2013, 106: 192.
[51] Wang Y L, Li T Y, Zhang W J, Huang Y Q. J. Solid State Electrochem., 2014, 18(7): 1981.
[52] Kacar C, Dalkiran B, Erden P E, Kilic E. Appl. Surf. Sci., 2014, 311: 139.
[53] Arora K, Choudhary M, Malhotra B D. Appl. Biochem. Biotechnol., 2014, 174(3): 1174.
[54] Moyo M, Okonkwo J O, Agyei N M. Enzyme Microb. Technol., 2014, 56: 28.
[55] Neto S A, Almeida T S, Belnap D M, Minteer S D, de Andrade A R. Enzyme Microb. Technol., 2014, 273: 1065.
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[3] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[6] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[7] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[8] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[9] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[10] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[11] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[12] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[13] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[14] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[15] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
阅读次数
全文


摘要

碳纳米管固定化酶