English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1251-1259 DOI: 10.7536/PC150212 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

碳纳米管固定化酶

万晓梅, 张川, 余定华, 黄和, 胡燚*   

  1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 210009
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 胡燚 E-mail:huyi@njtech.edu.cn
  • 基金资助:
    国家高技术研究发展计划(No.2011AA02A209)和国家杰出青年科学基金项目(No. 21225626)资助

Enzyme Immobilized on Carbon Nanotubes

Wan Xiaomei, Zhang Chuan, Yu Dinghua, Huang He, Hu Yi*   

  1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National High Technology Research and Development of China (No.2011AA02A209) and the National Science Foundation for Distinguished Young Scholars of China (No. 21225626).
在固定化酶技术中,载体材料的选择至关重要,碳纳米管作为一种新型高效的酶固定化载体,具有较大的比表面积、有序的纳米孔道结构、良好的力学/电学/热学性能、突出的化学稳定性、生物相容性和可控的表面官能化修饰等优良特性,应用日益广泛。本文重点介绍了水解酶、氧化还原酶等具有重要工业应用价值的酶在碳纳米管上的固定化研究现状,探讨了载体的表面修饰和固定化方式对固定化酶的酶学性质的影响,并对碳纳米管固定化酶的发展前景进行了展望。
In the technology of enzyme immobilization, the choice of carrier material is very important for the catalytic performance of enzyme. As a new type of high efficient enzyme immobilization carrier with larger specific surface area, ordered nano pore structure, good mechanical/electrical/thermal performance, outstanding chemical stability, biocompatibility and controllable surface functional modifications, carbon nanotubes are used more and more extensively. The recent research progress of enzyme immobilization on carbon nanotubes is reviewed in this paper, focusing on the immobilization of hydrolases and oxido-reductases, which have important industrial application value. The influence of surface modification of carrier and immobilizationmethods on the catalytic properties of immobilized enzymes is introduced. The outlook of potential applications of enzyme immobilization on carbon nanotubes is also prospected.

Contents
1 Introduction
2 Research of enzyme immobilization on carbon nanotubes
2.1 Hydrolase immobilization on carbon nanotubes
2.2 Oxido-reductase immobilization on carbon nanotubes
2.3 Other kinds of enzymes immobilization on carbon nanotubes
2.4 The application of immobilized enzymes in the biosensors
3 Conclusions

中图分类号: 

()
[1] Kohler V, Tumer N J. Chem. Commun., 2015, 51(3): 450.
[2] Reetz M T. J. Am. Chem. Soc., 2013, 135(34): 12480.
[3] Zheng G W, Xu J H. Curr. Opin. Biotechnol., 2011, 22(6): 784.
[4] DiCosimo R, McAuliffe J, Poulose A J, Bohlmann G. Chem. Soc. Rev., 2013, 42(15): 6437.
[5] Sheldon R A, Sander V P. Chem. Soc. Rev., 2013, 42(15): 6223.
[6] Carlsson N, Gustafsson H, Thorn C, Olsson L, Holmberg K, Akerman B. Adv. Colloid Interface Sci., 2014, 205: 339.
[7] Zhou Z, Hartmann M. Chem. Soc. Rev., 2013, 42(9): 3894.
[8] Min K, Yoo Y J. Biotechnol. Bioproc. Eng., 2014, 19(4): 553.
[9] Mehra N K, Mishra V, Jain N K. Biomaterials, 2014, 35(4): 1267.
[10] Valentini F, Carbone M, Palleschi G. Anal. Bioanal. Chem., 2013, 405(2/3): 451.
[11] Ding Y, Huang H, Hu Y. Chin. J. Org. Chem., 2013, 33(5): 905.
[12] Adlercreutz P. Chem. Soc. Rev., 2013, 42(15): 6406.
[13] Verma M L, Naebe M, Barrow C J, Puri M. PLoS One, 2013, 8(9): 1.
[14] Rastian Z, Khodadadi A A, Vahabzadeh F, Bortolini C, Dong M D, Mortazavi Y, Mogharei A, Naseh M V, Guo Z. Biochem. Eng. J., 2014, 90: 16.
[15] Lee S H, Doan T T N, Won K, Ha S H, Koo Y M. J. Mol. Catal. B: Enzym., 2010, 62(2): 169.
[16] Raghavendra T, Vahora U, Shah A R, Madamwar D. Biotechnol. Prog., 2014, 30(4): 828.
[17] Tan H S, Feng W, Ji P J. Bioresour. Technol., 2012, 115: 172.
[18] Ji P J, Tan H S, Xu X, Feng W. Bioeng. Food Nat. Prod., 2010, 56: 3005.
[19] Ke C X, Li X, Huang S S, Xu L, Yan Y J. RSC Adv., 2014, 4(101): 57810.
[20] Li L L, Feng W, Pan K H. Colloids Surf. B., 2013, 102: 124.
[21] Lee H K, Lee J K, Kim M J, Lee C J. Bull. Korean Chem. Soc., 2010, 31(3): 650.
[22] Shen E, Qu Y Y, Zhou H, Kong C L, Ma Q, Zhang X W, Zhou J T. Chin. J. Catal., 2013, (34): 723.
[23] Tiwari A, Dhakate S R. Int. J. Biol. Macromol., 2009, 44(5): 408.
[24] Zhao G H, Li Y F, Wang J Z, Zhu H. Appl. Microbiol. Biotechnol., 2011, 91(3): 591.
[25] Gòmez J M, Romero M D, Fernández T M. Catal. Lett., 2005, 101(3/4): 275.
[26] Mohiuddin M, Arbain D, Islam A K M S, Rahman M, Ahmad M S, Ahmad M N. Curr. Nanosci., 2014, 10(5): 730.
[27] Ansari S A, Satar R, Chibber S, Khan M J. J. Mol. Catal. B: Enzym., 2013, 97: 258.
[28] Garlet T B, Weber C T, Klaic R, Foletto E L, Jahn S L, Mazutti M A, Kuhn R C. Molecules, 2014, 19(9): 14615.
[29] Feng W, Sun X C, Ji P J. Soft Matter, 2012, 8(27): 7143.
[30] Sun J, Du K, Fu L, Gao J, Zhang H Y, Feng W, Ji P J. Appl. Mater. Interfaces., 2014, 6(17): 15132.
[31] Muthurasu A, Ganesh V. Appl. Biochem. Biotechnol., 2014, 174(3): 945.
[32] 毛新焕(MaoX H), 李响(Li X), 王姗姗( Wang S S), 张文静(Zhang W J), 曾成鸣(Zeng C M).生物工程学报(Chin. J. Biotech.), 2009, 25 ( 3 ): 388.
[33] Kim B J, Kang B K, Bahk Y Y, Yoo K H, Lim K J. Curr. Appl. Phys., 2009, 9(4): E263.
[34] Li Y, Huang X R, Qu Y B. J. Chem. Technol. Biotechnol., 2013, 88(12): 2227.
[35] Lee Y M, Kwon O Y, Yoon Y J, Ryu1 K. Biotechnol. Lett., 2006, 28(1): 39.
[36] 唐艳(Tang Y), 石鑫(Shi X), 冯春梁(Liang C L). 中国材料科技与设备(Chin. Mater. Sci. Technol. Equip.), 2011, 7(2): 15.
[37] 卿三红(Qing S H), 方柏山(Fang B S). 华侨大学学报(自然科学版)(Journal of Huaqiao University(Natural Science)), 2011, 32(5): 554.
[38] Wang L A, Wei L, Chen Y A, Jiang R R. J. Biotechnol., 2010, 150(1): 57.
[39] Wang L A, Xu R, Chen Y A, Jiang R R. J. Mol. Catal. B: Enzym., 2011, 69(3/4): 120.
[40] Couto S R, Herrera J L T. Biotechnol. Adv., 2006, 24 (5): 500.
[41] Trohalaki S, Pachter R, Luckarift H R, Johnson G R. Fuel Cells, 2012, 12(4): 656.
[42] Pang R, Li M Z, Zhang C D. Talanta, 2015, 131: 38.
[43] Dubey K K, Narayan A, Kumar D, Kumar P. J. Comput. Thero. Nanos., 2014, 11(8): 1812.
[44] Quan J, Liu Z Q, Branford-White C, Nie H L, Zhu L M. Colloids Surf. B, 2014, 121: 417.
[45] Zhang C D, Luo S M, Chen W. Talanta, 2013, 113: 142.
[46] Tiwari A. J. Inorg. Organomet. Polym., 2009, 19(3): 361.
[47] Mubarak N M, Wong J R, Tan K W, Sahu J N, Abdullah E C, Jayakumar N S, Ganesane P. J. Mol. Catal. B: Enzym., 2014, 107: 124.
[48] Subrizi F, Crucianelli M, Grossi V, Passacantando M, Botta G,Antiochia R, Saladino R. ACS Catal., 2014, 4(9): 3059.
[49] Subrizi F, Crucianelli M, Grossi V, Passacantando M, Pesci L, Saladino R. ACS Catal., 2014, 4(3): 810.
[50] Zhu L, Xu L L, Tan L, Tan H, Yang S F, Yao S Z. Talanta, 2013, 106: 192.
[51] Wang Y L, Li T Y, Zhang W J, Huang Y Q. J. Solid State Electrochem., 2014, 18(7): 1981.
[52] Kacar C, Dalkiran B, Erden P E, Kilic E. Appl. Surf. Sci., 2014, 311: 139.
[53] Arora K, Choudhary M, Malhotra B D. Appl. Biochem. Biotechnol., 2014, 174(3): 1174.
[54] Moyo M, Okonkwo J O, Agyei N M. Enzyme Microb. Technol., 2014, 56: 28.
[55] Neto S A, Almeida T S, Belnap D M, Minteer S D, de Andrade A R. Enzyme Microb. Technol., 2014, 273: 1065.
[1] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[4] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[5] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[6] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[7] 田丹碧, 吴胜男, 张浩, 江凌, 霍峰蔚. 荧光内滤效应技术在生物检测和疾病标志上的应用[J]. 化学进展, 2019, 31(2/3): 413-421.
[8] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[9] 梁晨希, 曹立新*, 张跃娟, 闫培生. 海洋毒素电化学生物传感器[J]. 化学进展, 2018, 30(7): 1028-1034.
[10] 李意羡, 贾月梅, 俞初一. 氟代亚氨基糖的合成与糖苷酶抑制活性[J]. 化学进展, 2018, 30(5): 586-600.
[11] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[12] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[13] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[14] 林英武. 人工金属酶分子设计新进展:肌红蛋白研究实例分析[J]. 化学进展, 2018, 30(10): 1464-1474.
[15] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
阅读次数
全文


摘要