English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1065-1073 DOI: 10.7536/PC150171 前一篇   后一篇

• 综述与评论 •

多酸促进半导体的光电转化及其在太阳能电池中的应用

李娜, 许林*, 孙志霞   

  1. 东北师范大学化学学院 多酸科学教育部重点实验室 长春 130024
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 许林 E-mail:linxu@nenu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21273031)资助

Enhancing Light-to-Electricity Conversion of Semiconductors by Polyoxometalates and Their Applications in Solar Cells

Li Na, Xu Lin*, Sun Zhixia   

  1. Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21273031).
多金属氧酸盐(简称为多酸)作为一种分子型金属氧化物,具有结构的多样性和独特的物理化学性质,在催化、分子基功能材料、分子磁学等领域显示出广泛的应用。特别是近年来,利用多酸作为电子受体去捕获半导体材料中的光生电子,促进电荷分离并且抑制半导体中载流子的复合,从而有效地提高了半导体的光电转换效率,在半导体光电器件和太阳能电池中显示了应用潜力。本文基于我们的研究工作和近期文献,综述了多酸促进半导体光电转换作用的研究进展及其在太阳能电池中的应用,并且对其未来的发展方向进行了展望。
Polyoxometalates (POMs), being one kind of molecular metal oxides, have structural variety and special physicochemical properties. They have showed broad applications in catalysis, molecule-based functional materials and molecular magnetism. In recent years, POMs can be used as electron acceptor to capture the photogenerated electrons from semiconductors. This facilitates charge separation and restrains electron-hole recombination. Thus the light-to-electricity conversion efficiency is obviously improved, which demonstrates the potential applications in both semiconductor devices and solar cells. In this review, based on our studies and recent literature, we summarize the advance of improving light-to-electricity conversion efficiency by POMs and their application in solar cells, and then make a prospect of future development in this area.

Contents
1 Introduction
2 The promotion to the light-to-electricity conversion efficiency of inorganic semiconductors by POM
3 The promotion to the light-to-electricity conversion efficiency of organic semiconductors by POM
4 The application in solar cells of POM
5 Conclusion

中图分类号: 

()
[1] 王恩波(Wang E B) , 胡长文(Hu C W) , 许林(Xu L). 多酸化学导论(Introduct Ion of Polyoxometalate Chemistry). 北京: 化学工业出版社(Beijing: Chemical Industry Press) , 1998. 1
[2] Rhule J T, Hil C L l, Judd D A, Schinazi R F. Chem. Rev., 1998, 98: 327.
[3] Long D L, Burkholder E, Cronin L. Chem. Soc. Rev., 2007, 36: 105.
[4] Pope M T, Müller A. Angew. Chem. Int. Ed. Engl., 1991, 30: 34.
[5] Liu S Q, Kurth D G, Volkmer D. Chem. Comm., 2002, 9: 976.
[6] Green M A.Silicon Solar Cells.Advanced Principles and Practice.Sydney: Bridge Printery, 1995. 1.
[7] Green M A, Emery K, Bucher K, King D L, Igari S. Prog. Photovoltaics, 1999, 7(1): 31.
[8] Ozer R R, Ferry J L. Environ. Sci. Technol., 2001, 35: 3242.
[9] Tachikawa T, Tojo S, Fujitsuka M, Majima T. Chem. Eur. J., 2006, 12: 3124.
[10] Hiskia A, Mylonas A, Papaconstantinou E. Chem. Soc. Rev., 2001, 30(1): 62.
[11] Choi W, Park H. J. Phys. Chem. B, 2003, 107: 3885.
[12] 王季陶(Wang J T),刘明登(Liu M D).半导体材料(Semiconductor Materials).北京:高等教育出版社(Beijing: Higher Education Press),1990.
[13] Ozer R R, Ferry J L. Environ. Sci. Technol., 2001, 35: 3242.
[14] Chen X B, Mao S S. Chem. Rev., 2007, 107 : 2891.
[15] Petrella A, Tamborra M, Curri M L, Cosma P, Striccoli M, Cozzoli P D, Agostiano A. J. Phys. Chem. B, 2005, 109: 1554.
[16] Zhang H, Wang G, Chen D, Lv X J, Li J H. Chem. Mater.,2008, 20: 6543.
[17] Chen H, Chen S, Quan X, Yu H T, Zhao H M, Zhang Y B. J. Phys. Chem. C, 2008, 112: 9285.
[18] Sun Z, Xu L, Guo W, Xu B, Liu S, Li F. J. Phys. Chem. C, 2010, 114: 5211.
[19] Wang L, Xu L, Mu Z, Wang C, Sun Z. J. Mater. Chem., 2012, 22: 23627.
[20] Wang L, Xu L, Sun Z, Mu Z. RSC Adv., 2013, 3: 21811.
[21] Sun Z, Fang S, Li F, Xu L, Hu Y, Ren J. J. Photochem. Photobiol. A, 2013, 252: 25.
[22] Sun Z, Li F, Xu L, Liu S, Zhao M, Xu B. J. Phys. Chem., 2012, 116: 6420.
[23] Zhang Y, Zhao Y, Li F, Sun Z, Xu L, Guo X. RSC Adv., 2014, 4: 1362.
[24] Wang T, Sun Z, Li F, Xu L. Electrochem. Commun., 2014, 47: 45.
[25] Grzadziel L, Krzywieckl M, Peisert H. Thin Solid Films, 2011, 519(7): 2187.
[26] Wang Y, Hu N, Zhou Z. J. Mater.Chem., 2011, 21(11): 3779.
[27] Yang Y, Xu L, Li F, Du X, Sun Z. J. Mater. Chem., 2010, 20: 10835.
[28] Sun Z, Fang S, Li F, Xu L, Hu Y, Ren J. J. Photochem. Photobio. A, 2013, 252: 25.
[29] Ahmed I, Farha R, Goldmann M, Ruhlmann L. Chem. Commun., 2013, 49: 496.
[30] Ashwell G J, Hargreaves R C, Baldwin C E, Bahra G S. Brown C R. Nature, 1992, 357: 393.
[31] Huang C H, Wang K Z, Xu G X, Zhao X S, Xie X M, Xu Y, Liu Y Q, Xu L G, Li T K. J. Phys. Chem., 1995, 99: 14397.
[32] Gao L H, Sun Q L, Qi J M, Lin X Y, Wang K Z. Electrochim. Acta, 2013, 92: 236.
[33] 高丽华(Gao L H), 张金凤(Zhang J F), 孙庆玲(Sun Q L), 王科志(Wang K Z). 化学学报(Acta Chim. Sin.), 2012, 70: 441.
[34] Gao L H, Chen X, Lu S, Wang K Z. J. Nanosci. Nanotechnol., 2013, 14: 3808.
[35] Gao L H, Lu S, Su J P, Wang K Z. J. Nanosci. Nanotechnol., 2013, 13: 1377.
[36] Lin X Y, Gao L H, Chen X, Qi J M, Wang K Z. J. Appl. Polymer Sci., 2014, 131: 39871.
[37] Jin G, Wang S M, Chen W L, Qin C, Su Z M, Wang E B. J. Mater. Chem. A, 2013, 1: 6727.
[38] Arici E, Sariciftci N S, Meissner D. Adv. Funct. Mater., 2003, 13(2): 165.
[39] Hardin B E, Snaith H J, McGehee M D. Nature Photonics, 2012, 6(3): 162.
[40] Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L. J. Am. Chem. Soc., 2009, 131(1): 56.
[41] Parayil S K, Lee Y M, Yoon M. Electrochem. Commun., 2009, 11: 1211.
[42] Sivakumar R, Thomas J, Yoon M. Journal of Photochem. Photobiol. C: Photochem.Rev., 2012, 13: 277.
[43] Luo X, Li F, Xu B, Sun Z, Xu L. J. Mater. Chem., 2012, 22: 15050.
[44] Palilis L C, Vasilopoulou M, Douvas A M, Georgiadou D G, Kennou S, Stathopoulos N A, Constantoudis V, Argitis P. Sol. Energ Mater. Sol. C, 2013, 114: 205.
[45] Li L, Yang Y, Fan R, Wang X, Zhang Q, Zhang L, Yang B, Cao W, Zhang W, Wang Y, Ma L. Dalton Trans., 2014, 43: 1577.
[46] Wang S M, Liu L, Chen W L, Su Z M, Wang E B, Li C. Ind. Eng. Chem. Res., 2014, 53: 150.
[47] Chen L, Sang X J, Li J S, Shan C H, Chen W L, Su Z M, Wang E B. Inorg. Chem. Commun., 2014, 47: 138.
[48] Sang X, Li J, Zhang L, Wang Z, Chen W, Zhu Z, Su Z, Wang E. ACS Appl. Mater. Interfaces, 2014, 6: 7876.
[49] Sang X, Li J, Zhang L, Zhu Z, Chen W, Li Y, Su Z, Wang E. Chem. Commum., 2014, 50: 14678.
[1] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[2] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[7] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[8] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[9] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[10] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[11] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[12] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[13] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[14] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[15] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.