English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 848-852 DOI: 10.7536/PC150169 前一篇   后一篇

所属专题: 计算化学

• 综述与评论 •

金纳米粒子和聚合物复合体系分子设计与组装过程的计算机模拟

李延春*1, 李洋2   

  1. 1. 吉林大学理论化学研究所 超分子结构与材料国家重点实验室 长春130023;
    2. 中国科学院东北地理与农业生态研究所 大豆分子设计育种重点实验室 长春 130012
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 李延春 E-mail:liyanchun@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51403022, 21374043)资助

Computer Simulation Study on the Molecular Design and the Self-Assembly Process of Au-Nanoparticle and Polymer Composite System

Li Yanchun*1, Li Yang2   

  1. 1. State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
    2. Key Laboratory of Soybean Molecular Design Breeding,Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51403022, 21374043).
金纳米粒子除了拥有纳米粒子的体积效应、表面效应、量子尺寸效应、宏观量子隧道效应等优异性能之外,还有一些特殊性能,如良好的稳定性、抗菌抑菌功能、表面吸收带效应、荧光效应等。量子化学计算方法提供了从分子水平上探究金团簇的催化和反应活性的影响因素,如金团簇的尺寸、形状、电子状态、活性位点的类型和结构等。分子动力学可以更好地模拟纳米粒子与配体和溶剂的相互作用方式,同时给出热力学和动力学行为。耗散粒子动力学等介观模拟方法则被应用到金纳米粒子和聚合物复合体系自组装过程的研究,并可以给出调控自组装结构的有效方案。以高分子与纳米粒子复合物为研究对象,明晰影响复合物结构和性质的主导因素,探索复合物调控机制,提出决定复合物功能的主控因素,进一步理解高分子与纳米粒子复合物的本质,可以为实验上制备、优化新型高分子与纳米粒子复合物材料提供可靠的理论帮助。
Au-nanoparticles have volume effect, surface effect, quantum size effect, macroscopic quantum tunneling effect and other excellent properties. In addition, there are some special properties for Au-nanoparticles, such as good stability, antibacterial function, surface absorption, fluorescence effect belt and so on. Quantum chemistry calculation provides a method to investigate the factors that affect the catalytic and reactive activity of gold clusters at the molecular level, such as the gold cluster size, shape, electronic state, active site and structure, etc. The interaction modes of nanoparticles with ligands and solvent can be better simulated by molecular dynamics, which can also give the behavior of thermodynamic and kinetic. Dissipative particle dynamics mesoscopic simulation method is applied to study the self-assembly process of Au-nanoparticles and polymer composite system, which would be an effective scheme to control the self-assembled structure. To clear the dominant factors influencing the complex structure and properties, to explore the complex regulation mechanism, to propose the main control factors, which is good for the further understanding the nature of Au-nanoparticles and polymer composite system. It is also providing a reliably theoretical help for experiments to prepare and optimize the new kinds of composite materials.

Contents
1 Introduction
1.1 Au-nanoparticles
1.2 Polymers
2 Computer simulation methods
2.1 Quantum chemistry,QC
2.2 Molecular dynamics,MD
2.3 Brownian dynamics,BD
2.4 Dissipative particle dynamics,DPD
3 Assembly of Au-nanoparticles and polymer composites
3.1 Au-nanoparticles and homopolymer
3.2 Au-nanoparticles and copolymer
4 Conclusion

中图分类号: 

()
[1] Nie Z H, Petukhova A, Kumacheva E. Nat. Nanotechnol., 2010, 5: 15.
[2] He J, Liu Y J, Hood T C, Zhang P, Gong J L, Nie Z H. Nanoscale, 2013, 5: 5151.
[3] Link S, El-Sayed M A. Int. Rev. Phys. Chem., 2000, 19: 409.
[4] Whetten R L, Khoury J T, Alvarez M M, Murthy S, Vezmar I, Wang Z L, Stephens P W, Cleveland C L, Luedtke W D, Landman U. Adv. Mater., 1996, 8: 428.
[5] Li Y, Wang D Q, Wang W, Li Y C, Huang X R, Sun C C, Jin M X. Chem. Res. Chinese U., 2014, 30: 144.
[6] Li Y, Zhu Y L, Li Y C, Qian H J, Sun C C. Mol. Simulat., 2014, 40: 449.
[7] Wu Z N, Li Y C, Liu J L, Lu Z Y, Zhang H, Yang B. Angew. Chem. Int. Ed., 2014, 53: 12196.
[8] Gao Y, Zeng X C. J. Am. Chem. Soc., 2005, 127: 3698.
[9] Shao N, Huang W, Gao Y, Wang L M, Li X, Wang L S, Zeng X C. J. Am. Chem. Soc., 2010, 132: 6596.
[10] Bulusu S, Zeng X C. J. Chem. Phys., 2006, 125: 154303.
[11] Pal R, Wang L M, Huang W, Wang L S, Zeng X C. J. Chem. Phys., 2011, 134: 54306.
[12] Bulusu S, Li X, Wang L S, Zeng X C. J. Phys. Chem. C, 2007, 111: 41908.
[13] Gu X, Bulusu S, Li X, Zeng X C, Li J, Gong X G, Wang L S. J. Phys. Chem. C, 2007, 111: 8228.
[14] Feng J, Pandey R B, Berry R J, Farmer B L, Naik R R, Heinz H. Soft Matter, 2011, 7: 2113.
[15] Iori F, Corni S. J. Comput. Chem., 2008, 29: 1656.
[16] Iori F, Di Felice R, Molinari E, Corni S. J. Comput. Chem., 2009, 30: 1465.
[17] Hughes Z E, Wright L B, Walsh T R. Langmuir, 2013, 29: 13217.
[18] Wright L B, Rodger P M, Corni S, Walsh T R. J. Chem. Theory Comput., 2013, 9: 1616.
[19] Kleiner K, Comas-Vives A, Naderian M, Mueller J E, Fantauzzi D, Mesgar M, Keith J A, Anton J, Jacob T. Adv. Phys. Chem., 2011, 2011: 11.
[20] Bae G T, Aikens C M. J. Phys. Chem. A, 2013, 117: 10438.
[21] Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M. J. Am. Chem. Soc., 1992, 114: 10024.
[22] O'Boyle N M, Banck M, James C A, Morley C, Vandermeersch T, Hutchison G R. J. Cheminform., 2011, 3: 33.
[23] Garberoglio G. J. Comput. Chem., 2012, 33: 2204.
[24] Huber S E, Warakulwit C, Limtrakul J, Tsukuda T, Probst M. Nanoscale, 2012, 4: 585.
[25] Kokh D B, Corni S, Winn P J, Hoefling M, Gottschalk K E, Wade R C. J. Chem. Theory Comput., 2010, 6: 1753.
[26] Leng Y S, Krstic P S, Wells J C, Cummings P T, Dean D J. J. Chem. Phys., 2005, 122: 244721.
[27] Legenski N, Zhou C G, Zhang Q F, Han B, Wu J P, Chen L A, Cheng H S, Forrey R C. J. Comput. Chem., 2011, 32: 1711.
[28] Lv J, Wang Y C, Zhu L, Ma Y M. J. Chem. Phys., 2012, 137: 84104.
[29] Iacovella C R, Glotzer S C. Soft Matter, 2009, 5: 4492.
[30] Iacovella C R, Glotzer S C. Nano Lett., 2009, 9: 1206.
[31] Phillips C L, Iacovella C R, Glotzer S C. Soft Matter, 2010, 6: 1693.
[32] Li Y, Li Y C. Chem. J. Chinese U., 2014, 35: 1037.
[33] Chen T, Lamm M H, Glotzer S C. J. Chem. Phys., 2004, 121: 3919.
[34] Santos A, Millan J A, Glotzer S C. Nanoscale, 2012, 4: 2640.
[35] Li Y C, Liu H, Huang X R, Sun C C. Chem. J. Chinese U., 2011, 32: 1845.
[36] Li Y C, Liu H, Huang X R, Sun C C. Mol. Simulat., 2011, 37: 875.
[37] Li Y C, Liu H, Huang X R, Sun C C. Chem. J. Chinese U., 2011, 32: 2421.
[38] Li Y C, Wang Y L, Li Z W, Liu H, Lü Z Y. Chin. Sci. Bull., 2013, 58: 3595.
[39] Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J. Comput. Chem., 2013, 34: 2197.
[40] Ma Z W, Li R K Y. J. Colloid Interf. Sci., 2011, 363: 241.
[41] Cui J, Li W, Jiang W. Chinese J. Poly. Sci., 2013, 31: 1225.
[42] Corma A, Concepcion P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo Lopez-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Nat. Chem., 2013, 5: 775.
[43] Schmid G. Chem. Soc. Rev., 2008, 37: 1909.
[44] Shichibu Y, Suzuki K, Konishi K. Nanoscale, 2012, 4: 4125.
[45] Bockstaller M R, Thomas E L. J. Phys. Chem. B, 2003, 107: 10017.
[46] Nie Z H, Fava D, Kumacheva E, Zou S, Walker G C, Rubinstein M. Nat. Mater., 2007, 6: 609.
[47] Fava D, Nie Z, Winnik M A, Kumacheva E. Adv. Mater., 2008, 20: 4318.
[48] Nie Z H, Fava D, Rubinstein M, Kumacheva E. J. Am. Chem. Soc., 2008, 130: 3683.
[49] Liu K, Nie Z H, Zhao N N, Li W, Rubinstein M, Kumacheva E. Science, 2010, 329: 197.
[50] Liu K, Ahmed A, Chung S, Sugikawa K, Wu G X, Nie Z H, Gordon R, Kumacheva E. ACS Nano, 2013, 7: 5901.
[51] Wu Z N, Dong C W, Li Y C, Hao H X, Zhang H, Lu Z Y, Yang B. Angew. Chem. Int. Ed., 2013, 52: 9952.
[52] He J, Zhang P, Babu T, Liu Y J, Gong J L, Nie Z H. Chem. Commun., 2013, 49: 576.
[53] He J, Huang X L, Li Y C, Liu Y J, Babu T, Aronova M A, Wang S J, Lu Z Y, Chen X Y, Nie Z H. J. Am. Chem. Soc., 2013, 135: 7974.
[54] He J, Liu Y J, Babu T, Wei Z J, Nie Z H. J. Am. Chem. Soc., 2012, 134: 11342.
[55] Lin J, Wang S J, Huang P, Wang Z, Chen S H, Niu G, Li W W, He J, Cui D X, Lu G M, Chen X Y, Nie Z H. ACS Nano, 2013, 7: 5320.
[56] Huang P, Lin J, Li W W, Rong P F, Wang Z, Wang S J, Wang X P, Sun X L, Aronova M, Niu G, Leapman R D, Nie Z H, Chen X Y. Angew. Chem. Int. Ed., 2013, 52: 13958.
[57] Liu Y J, Li Y C, He J, Duelge K J, Lu Z Y, Nie Z H. J. Am. Chem. Soc., 2014, 136: 2602.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[10] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[11] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[12] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[13] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[14] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[15] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.