English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1158-1166 DOI: 10.7536/PC150167 前一篇   后一篇

• 综述与评论 •

纳米碳基材料在导电胶黏剂中的应用

罗杰1,2, 李朝威2,3, 兰竹瑶2,4, 陈名海2*, 姚亚刚2*, 赵岳1   

  1. 1. 上海大学材料科学与工程学院 上海 200444;
    2. 中国科学院苏州纳米技术与纳米仿生研究所 苏州 215123;
    3. 上海大学理学院 上海 200444;
    4. 兰州理工大学材料科学与工程学院 兰州 730050
  • 收稿日期:2015-01-01 修回日期:2015-05-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 陈名海, 姚亚刚 E-mail:mhchen2008@sinano.ac.cn;ygyao2013@sinano.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 51372265)资助

The Application of Nano Carbon Based Materials in Electrical Conductive Adhesives

Luo Jie1,2, Li Chaowei2,3, Lan Zhuyao2,4, Chen Minghai2*, Yao Yagang2*, Zhao Yue1   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
    2. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 21512;
    3. School of Sciences, Shanghai University, Shanghai 20044;
    4. School of Nano Science and Technology, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2015-01-01 Revised:2015-05-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51372265).
具有导电、导热等功能的胶黏剂相对于普通胶黏剂具有更高的应用价值,在电子封装领域已得到了广泛应用,然而其成本受制于高体积含量的贵金属填料而无法有效降低。本文基于这些现状总结和分析了近些年来国内外对于解决这类问题的方法和最新研究成果,发现碳纳米管、石墨烯等纳米碳材料具有优异的力学、导电和导热能力,与金属填料复合可以降低10wt%~20 wt%的金属填料含量。特别地,碳纳米管作为一维纳米材料能够作为“桥梁”将导电金属填料相互连接起来,可有效提高胶黏剂的导电能力、热稳定性和力学性能,同时降低填料的导电导热阈值和制备成本。通过聚合物基体(如热塑性与热固性树脂)的优化与选择,胶黏剂的力学性能可得到进一步的改善,以便满足于柔性电子器件的封装要求。另外,我们认为通过化学方法制备纳米粒子高温固化后也可以烧结构筑导电导热网络,提高材料的性能。
Nowadays people have a fancy for good electrically and thermally conductivity adhesives because they have wide applications compared with the ordinary adhesives, especially in the field of electronic packaging. However, the cost is subject to high volume content of the metal fillers, which can't be reduced effectively. This review summarizes the latest research work and analyzes the reported methods aimed to solve this kind of problem in recent years. Nanocarbon materials, such as carbon nanotubes (CNTs) and graphene, have excellent electrical, mechanical and thermal properties, which have been widely used as fillers in the composites. By mixing them with metal fillers, it is able to reduce 10 wt% ~20 wt% content of metal fillers. Especially, CNTs as one-dimensional nano material could bridge the neighboring conductive metal fillers for both reducing the metal content and effectively improving the electrical, mechanical and thermal properties of as-prepared composites. By choosing different polymer matrixes such as thermal plastic and thermal set resin, the mechanical properties of the adhesive can be further improved and satisfy with the packaging requirements of flexible electrical devices. In addition, we think that it is a good way to improve the electrical and thermal properties by sintering the nanoparticles at high temperature, which are synthesized by chemistry reaction.

Contents
1 Introduction
2 The performance of CNTs modified adhesives
2.1 Electrical and mechanical properties
2.2 Thermal properties
3 The performance of graphite and graphene modified adhesives
4 Conclusion and outlook

中图分类号: 

()
[1] Li Y, Wong C P. Mat. Sci. Eng. R., 2006, 51: 1.
[2] Pike G, Seager C. Phys. Rev. B, 1974, 10: 1421.
[3] Li Y, Moon K S, Wong C P. IEEE Trans. Compon. Packing T., 2006, 29: 173.
[4] Yim M J, Li Y, Moon K S, Paik K W, Wong C P. J. Adhes. Sci. Technol., 2008, 22: 1593.
[5] Li Y, Moon K S, Wong C P. Science., 2005, 308: 1419.
[6] Giliopoulos D J, Triantafyllidis K S, Gournis D. Springer, 2013,188:155.
[7] Ma R, Kwon S, Zheng Q, Kwon H Y, Kim J I, Choi H R, Baik S. Adv. Mater., 2012, 24: 3344.
[8] Wu H, Liu J, Wu X, Ge M, Wang Y, Zhang G, Jiang J. Int. J. Adhes. Adhes., 2006, 26: 617.
[9] Qiao W, Bao H, Li X, Jin S, Gu Z. Int. J. Adhes. Adhes., 2014, 48: 159.
[10] Pu N W, Peng Y Y, Wang P C, Chen C Y, Shi J N, Liu Y M, Ger M D, Chang C L. Carbon, 2014, 67: 449.
[11] Zhang Y, Qi S, Wu X, Duan G. Synthet. Metal., 2011, 161: 516.
[12] 张强(Zhang Q), 黄佳琦(Huang J Q), 赵梦强(Zhao M Q), 骞伟中(Sai W Z),魏飞(Wei F). 中国科学: 化学(Sci.China:Chem.), 2013,(6): 641.
[13] Iijima S. Nature, 1991, 354: 56.
[14] De Volder, M F, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339: 535.
[15] Iijima S, Brabec C, Maiti A, Bernholc J. J. Chem. Phys., 1996, 104: 2089.
[16] Huang Y, Liang J, Chen Y. Small, 2012, 8: 1805.
[17] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau C N. Nat. Nanotechnol., 2009, 4: 562.
[18] 朱苗淼(Zhu M M), 王汝敏(Wang R M),程雷(Cheng L).中国胶粘剂(China Adhesives), 2010, 19(8): 54.
[19] Chen H, Muthuraman H, Stokes P, Zou J, Liu X, Wang J, Huo Q, Khondaker S I, Zhai L. Nanotechnol., 2007, 18: 415.
[20] Gojny F H, Wichmann M H G, Fiedler B, Kinloch I A, Bauhofer W, Windle A H, Schulte K. Polymer, 2006, 47: 2036.
[21] Ma P C, Siddiqui N A, Marom G, Kim J K. Compos. Part A-Appl. S., 2010, 41: 1345.
[22] Kwon Y, Yim B S, Kim J M, Kim J. Microelectron. Rel., 2011, 51: 812.
[23] Špitalsk Dý Z, Krontiras C A, Georga S N, Galiotis C. Part A-Appl. S., 2009, 40: 778.
[24] Nam S, Cho H W, Soonho Lim, Kim D, Kim H, Sung B J. J. Am. Chem. Soc., 2013,7,851.
[25] Yoon H, Yamashita M, Ata S, Futaba D N, Yamada T, Hata K. Sci. Rep., 2014, 4: 3907.
[26] Ata S, Kobashi K, Yumura M, Hata K. Nano Lett., 2012, 12: 2710.
[27] Kobashi K, Ata S, Yamada T, Futaba D, Yumura M, Hata K. Chem. Sci., 2013, 4: 727.
[28] Santamaria A, Muñoz M E, Fernández M, Landa M. J. Appl. Polym. Sci., 2013, 129: 1643.
[29] Buldum A, Lu J. Phys. Rev. B, 2001, 63:161403.
[30] Stadermann M, Papadakis S, Falvo M, Novak J, Snow E, Fu Q, Liu J, Fridman Y, Boland J, Superfine R, Washburn S. Phys. Rev. B, 2004, 69:201402.
[31] Ma P C, Tang B Z, Kim J K. Carbon, 2008, 46: 1497.
[32] Cui H W, Kowalczyk A, Li D S, Fan Q. Int. J. Adhes. Adhes., 2013, 44: 220.
[33] Durairaj R, Man L W, Ping L J, Pheng L S, Subramaniam R T. Eng. Lett., 2013, 21.
[34] Yang C, Yuen M M, Gao B, Ma Y, Wong C P. J. Electron. Mater., 2011, 40: 78.
[35] Xin F, Li L. Compos. Part A-Appl. S., 2011, 42: 961.
[36] Yang C, Lin W, Li Z, Zhang R, Wen H, Gao B, Chen G, Gao P, Yuen M M, Wong C P. Adv. Funct. Mater., 2011, 21: 4582.
[37] Wang L, Wan C, Wang H, Chen H, Zhu X, Li M. Int. J. Adhes. Adhes., 2013, 45: 132.
[38] Moniruzzaman M, Winey K I. Macromolecules, 2006, 39: 5194
[39] Shenogin S, Xue L P, Rahmi O, Pawel K, J. Appl. Phys., 2004, 95: 8136.
[40] Zhang Z, Zeng X, Zhang L, Zhu P, Zhang K, Fu X, Sun R, Yuen M M F, Wong C P. IEEE, 2013. 301.
[41] Ghaleb Z A, Mariatti M, Ariff Z M. Compos. Part A-Appl. S., 2014, 58: 77.
[42] Mach P, Busek D, Polansky R. IEEE,Electronic System-Integration Technology Conference (ESTC), 2010. 1~5.
[43] Wunderlich B. Springer, 2005. 907.
[44] Li Y, Moon K S, Whitman A, Wong C P. IEEE, 2006, 29: 758.
[45] 张志浩(Zhang Z H), 施利毅(Shi L Y), 代凯(Dai K), 余星昕(Yu X X), 朱惟德(Zhu W D). 功能材料(Functional Materials), 2008, 39: 337.
[46] Lee H H, Chou K S, Shih Z W. Int. J. Adhes. Adhes., 2005, 25: 437.
[47] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A, Ruoff R S. Nat. Mater, 2012, 11: 203.
[48] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282.
[49] Chen Y, Zhang X, Zhang D, Yu P, Ma Y. Carbon, 2011, 49: 573.
[50] Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 2: 572.
[51] Dou S, Qi J, Guo X, Yu C. J. Adhes. Sci. Technol., 2014, 28: 1556.
[52] Lin W, Xi X, Yu C. Synthet. Metal., 2009, 159: 619.
[53] Liang T X, Guo W L, Yan Y H, Tang C L. Int. J. Adhes. Adhes., 2008, 28: 55.
[54] Luan V H, Tien H N, Cuong T V, Kong B S, Chung J S, Kim E J, Hur S H. J. Mater. Chem., 2012, 22: 8649.
[55] 赵冬梅(Zhao D M), 李振伟(Li Z W),刘领弟(Liu L D), 张艳红(Zhang Y H), 任德财(Ren D C),李坚(Li J). 化学学报(Acta Chim. Sin.), 2014, 72: 185.
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[5] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[6] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[7] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[12] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[13] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[14] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.