English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1275-1290 DOI: 10.7536/PC150155 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

硅基锂离子电池负极材料

牛津, 张苏, 牛越, 宋怀河*, 陈晓红, 周继升   

  1. 北京化工大学化工资源有效利用国家重点实验室 材料电化学过程与技术北京市重点实验室 北京 100029
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 宋怀河 E-mail:songhh@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51272019,51272016)和北京市优秀博士学位论文基金项目(No.YB20121001001)资助

Silicon-Based Anode Materials for Lithium-Ion Batteries

Niu Jin, Zhang Su, Niu Yue, Song Huaihe*, Chen Xiaohong, Zhou Jisheng   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51272019, 51272016) and the Foundation of Excellent Doctoral Dissertation of Beijing City (No.YB20121001001).
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。
Silicon has the highest theoretical capacity(4200 mAh ·g-1) when used as the anode material for lithium-ion batteries. But the severe volume change(> 300%) during Li+insertion/extraction processes results in the structural destruction, which further leads to the loss of electrical contact between active materials themselves or active materials and the current collectors. Moreover, the new solid electrolyte interphase (SEI) continually forms on the surface of silicon. All of these problems cause capacity attenuation as well as the poor cycling and rate performance for silicon-based anode materials. In this review, the lithium-storage and capacity fading mechanisms of silicon-based materials for lithium-ion batteries are summarized. To overcome the severe volume change during charge/discharge, selection and structure design of silicon material are introduced. Synthetic routes, electrochemical performance and possible mechanisms of typical silicon-based composite materials, especially various silicon/carbon composite materials, are discussed. An overview of several novel fabrication techniques of the electrodes for improving the electrochemical performance of silicon-based anode materials and their possible mechanisms are given. Challenges and perspectives of silicon-based anode materials are also proposed and discussed.

Contents
1 Introduction
2 Lithium-storage and capacity fading mechanisms
3 Selection and structure design of silicon material
3.1 Amorphous silicon and silicon oxide
3.2 Low-dimensional silicon materials
3.3 Porous and hollow silicon materials
4 Fabrication of silicon-based composites
4.1 Silicon/metal composites
4.2 Silicon/carbon composites
4.3 Other silicon-based materials
5 Optimizing the preparation process of electrodes
5.1 Treatments of electrodes
5.2 Selection of current collectors
5.3 Choices of binders
5.4 Options of electrolyte
6 Conclusion and outlook

中图分类号: 

()
[1] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[2] Kasavajjula U, Wang C, Appleby A J. J. Power Sources, 2007, 163: 1003.
[3] 陈敬波(Chen J B), 赵海雷(Zhao H L), 何见超(He J C), 王梦微(Wang M W). 化学进展(Progress in Chemistry), 2009, 21: 2115.
[4] 高鹏飞(Gao P F), 杨军(Yang J). 化学进展(Progress in Chemistry), 2011, 23: 264.
[5] 陶占良(Tao Z L), 王洪波(Wang H B), 陈军(Chen J). 化学进展(Progress in Chemistry), 2011, 23: 318.
[6] Chan C K, Peng H, Liu G, Mcilwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2007, 3: 31.
[7] Yin Y, Wan L, Guo Y. Chin. Sci. Bull., 2012, 57: 4104.
[8] Yang J, Winter M, Besenhard J. Solid State Ionics, 1996, 90: 281.
[9] Besenhard J, Yang J, Winter M. J. Power Sources, 1997, 68: 87.
[10] Zhang W J. J. Power Sources, 2011, 196: 13.
[11] Dey A. J. Electrochem. Soc., 1971, 118: 1547.
[12] Boukamp B, Lesh G, Huggins R. J. Electrochem. Soc., 1981, 128: 725.
[13] Sharma R A, Seefurth R N. J. Electrochem. Soc., 1976, 123: 1763.
[14] Limthongkul P, Jang Y I, Dudney N J, Chiang Y M. Acta Mater., 2003, 51: 1103.
[15] Obrovac M, Christensen L. Electrochem. Solid State Lett., 2004, 7: A93.
[16] Hatchard T, Dahn J. J. Electrochem. Soc., 2004, 151: A838.
[17] Li J, Dahn J. J. Electrochem. Soc., 2007, 154: A156.
[18] Obrovac M, Krause L. J. Electrochem. Soc., 2007, 154: A103.
[19] Winter M, Besenhard J O, Spahr M E, Novak P. Adv. Mater., 1998, 10: 725.
[20] Lee S J, Lee J K, Chung S H, Lee H Y, Lee S M, Baik H K. J. Power Sources, 2001, 97: 191.
[21] Ryu J H, Kim J W, Sung Y E, Oh S M. Electrochem. Solid State Lett., 2004, 7: A306.
[22] Kang Y M, Go J Y, Lee S M, Choi W U. Electrochem. Commun., 2007, 9: 1276.
[23] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V, Guduru P R. J. Power Sources, 2010, 195: 5062.
[24] Wen Z S, Wang K, Xie J Y. J. Inorg. Mater., 2007, 3: 012.
[25] Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y. J. Power Sources, 2009, 189: 34.
[26] Lee Y M, Lee J Y, Shim H T, Lee J K, Park J K. J. Electrochem. Soc., 2007, 154: A515.
[27] Choi N S, Yew K H, Kim H, Kim S S, Choi W U. J. Power Sources, 2007, 172: 404.
[28] Key B, Bhattacharyya R, Morcrette M, Sezné C V, Tarascon J M, Grey C P. J. Am. Chem. Soc., 2009, 131: 9239.
[29] Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D. Electrochem. Commun., 2007, 9: 796.
[30] Jung H, Park M, Yoon Y G, Kim G B, Joo S K. J. Power Sources, 2003, 115: 346.
[31] Yang Z, Guo J, Xu S, Yu Y, Abruña H D, Archer L A. Electrochem. Commun., 2013, 28: 40.
[32] Seong I W, Kim K T, Yoon W Y. J. Power Sources, 2009, 189: 511.
[33] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. J. Electrochem. Soc., 2004, 151: A1572.
[34] Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. J. Electrochem. Soc., 2005, 152: A2089.
[35] Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J, Yamamoto O. Solid State Ionics, 2002, 152: 125.
[36] Netz A, Huggins R A. Solid State Ionics, 2004, 175: 215.
[37] Chen J, Cheng F. Acc. Chem. Res., 2009, 42: 713.
[38] Guo Y G, Hu J S, Wan L J. Adv. Mater., 2008, 20: 2878.
[39] Beaulieu L, Eberman K, Turner R, Krause L, Dahn J. Electrochem. Solid State Lett., 2001, 4: A137.
[40] Li H, Huang X, Chen L, Wu Z, Liang Y. Electrochem. Solid State Lett., 1999, 2: 547.
[41] Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo Y J, Pei N. Solid State Ionics, 2000, 135: 181.
[42] Sandu I, Moreau P, Guyomard D, Brousse T, Roue L. Solid State Ionics, 2007, 178: 1297.
[43] Kim H, Seo M, Park M H, Cho J. Angew. Chem. Int. Ed., 2010, 49: 2146.
[44] Bourderau S, Brousse T, Schleich D. J. Power Sources, 1999, 81: 233.
[45] Ohara S, Suzuki J, Sekine K, Takamura T. J. Power Sources, 2003, 119: 591.
[46] Lee K L, Jung J Y, Lee S W, Moon H S, Park J W. J. Power Sources, 2004, 129: 270.
[47] Uehara M, Suzuki J, Tamura K, Sekine K, Takamura T. J. Power Sources, 2005, 146: 441.
[48] Takamura T, Uehara M, Suzuki J, Sekine K, Tamura K. J. Power Sources, 2006, 158: 1401.
[49] Park M, Wang G, Liu H K, Dou S X. Electrochim. Acta, 2006, 51: 5246.
[50] Zhang T, Zhang H, Yang L, Wang B, Wu Y, Takamura T. Electrochim. Acta, 2008, 53: 5660.
[51] Guo H, Zhao H, Yin C, Qiu W. Mater. Sci. Eng. B, 2006, 131: 173.
[52] Yoshimura K, Suzuki J, Sekine K, Takamura T. J. Power Sources, 2005, 146: 445.
[53] Maranchi J, Hepp A, Kumta P. Electrochem. Solid State Lett., 2003, 6: A198.
[54] Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K. J. Power Sources, 2004, 129: 96.
[55] Zhang Y, Tang Y, Wang N, Yu D, Lee C, Bello I, Lee S. Appl. Phys. Lett., 1998, 72: 1835.
[56] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C, Lieber C M. Nano Lett., 2004, 4: 433.
[57] Ge S, Jiang K, Lu X, Chen Y, Wang R, Fan S. Adv. Mater., 2005, 17: 56.
[58] Bogart T E, Dey S, Lew K K, Mohney S E, Redwing J M. Adv. Mater., 2005, 17: 114.
[59] Zhang X Y, Zhang L, Meng G, Li G, Jin Phillipp N, Phillipp F. Adv. Mater., 2001, 13: 1238.
[60] Pan Z, Dai Z, Xu L, Lee S, Wang Z. J. Phys. Chem. B, 2001, 105: 2507.
[61] Niu J, Sha J, Yang D. Physica E, 2004, 24: 278.
[62] Niu J, Sha J, Yang D. Physica E, 2004, 23: 131.
[63] Peng K, Hu J, Yan Y, Wu Y, Fang H, Xu Y, Lee S, Zhu J. Adv. Funct. Mater., 2006, 16: 387.
[64] 刘莉(Liu L), 曹阳(Cao Y), 贺军辉(He J H), 杨巧文(Yang Q W). 化学进展(Progress in Chemistry), 2012, 25: 248.
[65] Huang R, Zhu J. Mater. Chem. Phys., 2010, 121: 519.
[66] Zhang C, Gu L, Kaskhedikar N, Cui G, Maier J. ACS Appl. Mater. Interfaces, 2013, 5: 12340.
[67] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9: 3844.
[68] Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I. Nano Lett., 2010, 10: 1710.
[69] Wen Z, Lu G, Mao S, Kim H, Cui S, Yu K, Huang X, Hurley P T, Mao O, Chen J. Electrochem. Commun., 2013, 29: 67.
[70] Zhou Y, Jiang X, Chen L, Yue J, Xu H, Yang J, Qian Y. Electrochim. Acta, 2014, 127: 252.
[71] Lam C, Zhang Y, Tang Y, Lee C, Bello I, Lee S. J. Cryst. Growth, 2000, 220: 466.
[72] Ma H, Cheng F, Chen J Y, Zhao J Z, Li C S, Tao Z L, Liang J. Adv. Mater., 2007, 19: 4067.
[73] Kim H, Han B, Choo J, Cho J. Angew. Chem. Int. Ed., 2008, 120: 10305.
[74] Lv R, Yang J, Gao P, Nuli Y, Wang J. J. Alloys Compd., 2010, 490: 84.
[75] Jiang Z, Li C, Hao S, Zhu K, Zhang P. Electrochim. Acta, 2014, 115: 393.
[76] Shin H C, Corno J A, Gole J L, Liu M. J. Power Sources, 2005, 139: 314.
[77] Kang D K, Corno J A, Gole J L, Shin H C. J. Electrochem. Soc., 2008, 155: A276.
[78] Liu Y, Chen B, Cao F, Chan H L, Zhao X, Yuan J. J. Mater. Chem., 2011, 21: 17083.
[79] Ge M, Lu Y, Ercius P, Rong J, Fang X, Mecklenburg M, Zhou C. Nano Lett., 2013, 14: 261.
[80] Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C. Nano Res., 2013, 6: 174.
[81] Bao Z, Weatherspoon M R, Shian S, Cai Y, Graham P D, Allan S M, Ahmad G, Dickerson M B, Church B C, Kang Z. Nature, 2007, 446: 172.
[82] Du Y, Zhu G, Wang K, Wang Y, Wang C, Xia Y. Electrochem. Commun., 2013, 36: 107.
[83] Zhu S, Zhu C, Ma J, Meng Q, Guo Z, Yu Z, Lu T, Li Y, Zhang D, Lau W M. RSC Adv., 2013, 3: 6141.
[84] Hong I, Scrosati B, Croce F. Solid State Ionics, 2013, 232: 24.
[85] Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z. Adv. Energy Mater., 2011, 1: 1036.
[86] Du F H, Wang K X, Fu W, Gao P F, Wang J F, Yang J, Chen J S. J. Mater. Chem. A, 2013, 1: 13648.
[87] Yao Y, Mcdowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y. Nano Lett., 2011, 11: 2949.
[88] Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J Y. Angew. Chem. Int. Ed., 2012, 51: 2409.
[89] Liu N, Wu H, Mcdowell M T, Yao Y, Wang C, Cui Y. Nano Lett., 2012, 12: 3315.
[90] Iwamura S, Nishihara H, Kyotani T. J. Phys. Chem. C, 2012, 116: 6004.
[91] Ru Y, Evans D G, Zhu H, Yang W. RSC Adv., 2014, 4: 71.
[92] Niu J, Zhang S, Niu Y, Song R, Song H, Chen X, Zhou J, Hong S. RSC Adv., 2014, 4: 29435.
[93] Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, Cui Y. Nat. Nanotechnol., 2014, 9: 187.
[94] Kim H, Choi J, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146: 4401.
[95] Roberts G, Cairns E, Reimer J. J. Power Sources, 2002, 110: 424.
[96] Yan J, Huang H, Zhang J, Yang Y. J. Power Sources, 2008, 175: 547.
[97] Hatchard T, Dahn J. J. Electrochem. Soc., 2004, 151: A1628.
[98] Kwon Y, Kim H, Doo S G, Cho J. Chem. Mater., 2007, 19: 982.
[99] Hatchard T, Obrovac M, Dahn J. J. Electrochem. Soc., 2005, 152: A2335.
[100] Yoon S, Park C M, Kim H, Sohn H J. J. Power Sources, 2007, 167: 520.
[101] Wolfenstine J. J. Power Sources, 2003, 124: 241.
[102] Hwang C M, Park J W. J. Power Sources, 2011, 196: 6772.
[103] Hwang C M, Lim C H, Park J W. Thin Solid Films, 2011, 519: 2332.
[104] Song T, Cheng H, Choi H, Lee J H, Han H, Lee D H, Yoo D S, Kwon M S, Choi J M, Doo S G. ACS Nano, 2011, 6: 303.
[105] Wang G, Sun L, Bradhurst D, Zhong S, Dou S, Liu H. J. Power Sources, 2000, 88: 278.
[106] Lee H Y, Kim Y L, Hong M K, Lee S M. J. Power Sources, 2005, 141: 159.
[107] Park M S, Kang Y M, Rajendran S, Kwon H S, Lee J Y. Mater. Chem. Phys., 2006, 100: 496.
[108] Kim H, Im D, Doo S G. J. Power Sources, 2007, 174: 588.
[109] Zhou S, Liu X, Wang D. Nano Lett., 2010, 10: 860.
[110] Kang K, Song K, Heo H, Yoo S, Kim G S, Lee G, Kang Y M, Jo M H. Chem. Sci., 2011, 2: 1090.
[111] Zhang H, Braun P V. Nano Lett., 2012, 12: 2778.
[112] Xiao Q, Zhang Q, Fan Y, Wang X, Susantyoko R A. Energy Environ. Sci., 2014. 7: 2261.
[113] Kim B C, Uono H, Satou T, Fuse T, Ishihara T, Ue M, Senna M. J. Electrochem. Soc., 2005, 152: A523.
[114] Kang Y M, Park M S, Song M S, Lee J Y. J. Power Sources, 2006, 162: 1336.
[115] Yoon S, Lee S I, Kim H, Sohn H J. J. Power Sources, 2006, 161: 1319.
[116] Zhang Z, Wang Y, Tan Q, Li D, Chen Y, Zhong Z, Su F. Nanoscale, 2014, 6: 371.
[117] Hwang S M, Lee H Y, Jang S W, Lee S M, Lee S J, Baik H K, Lee J Y. Electrochem. Solid State Lett., 2001, 4: A97.
[118] Yang X, Wen Z, Huang S, Zhu X, Zhang X. Solid State Ionics, 2006, 177: 2807.
[119] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Electrochem. Commun., 2003, 5: 544.
[120] Dong H, Feng R, Ai X, Cao Y, Yang H. Electrochim. Acta, 2004, 49: 5217.
[121] Weydanz W, Wohlfahrt Mehrens M, Huggins R. J. Power Sources, 1999, 81: 237.
[122] Kim Y L, Lee H Y, Jang S W, Lim S H, Lee S J, Baik H K, Yoon Y S, Lee S M. Electrochim. Acta, 2003, 48: 2593.
[123] Kim H S, Chung K Y, Cho B W. J. Power Sources, 2009, 189: 108.
[124] Edfouf Z, Cuevas F, Latroche M, Georges C, Jordy C, Hézèque T, Caillon G, Jumas J C, Sougrati M T. J. Power Sources, 2011, 196: 4762.
[125] Yang X, Wen Z, Xu X, Lin B, Huang S. J. Power Sources, 2007, 164: 880.
[126] Yu J, Zhan H, Wang Y, Zhang Z, Chen H, Li H, Zhong Z, Su F. J. Power Sources, 2013, 112.
[127] Holzapfel M, Buqa H, Scheifele W, Novák P, Petrat F M. Chem. Commun., 2005, 1566.
[128] Zhu X, Chen H, Wang Y, Xia L, Tan Q, Li H, Zhong Z, Su F, Zhao X. J. Mater. Chem. A, 2013, 1: 4483.
[129] Cahen S, Janot R, Laffont Dantras L, Tarascon J M. J. Electrochem. Soc., 2008, 155: A512.
[130] Zuo P, Yin G, Ma Y. Electrochim. Acta, 2007, 52: 4878.
[131] Morita T, Takami N. J. Electrochem. Soc., 2006, 153: A425.
[132] Du C, Gao C, Yin G, Chen M, Wang L. Energy Environ. Sci., 2011, 4: 1037.
[133] Ma C, Ma C, Wang J, Wang H, Shi J, Song Y, Guo Q, Liu L. Carbon, 2014, 72: 38.
[134] Xie J, Cao G, Zhao X. Mater. Chem. Phys., 2004, 88: 295.
[135] Wang G, Yao J, Liu H. Electrochem. Solid State Lett., 2004, 7: A250.
[136] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9: 353.
[137] Chen Y, Nie M, Lucht B L, Saha A, Guduru P R, Bose A. ACS Appl. Mater. Interfaces, 2014, 6: 4678.
[138] Kwon Y, Park G S, Cho J. Electrochim. Acta, 2007, 52: 4663.
[139] Gao P, Fu J, Yang J, Lv R, Wang J, Nuli Y, Tang X. Phys. Chem. Chem. Phys., 2009, 11: 11101.
[140] Shao D, Tang D, Mai Y, Zhang L. J. Mater. Chem. A, 2013, 1: 15068.
[141] Wilson A, Xing W, Zank G, Yates B, Dahn J. Solid State Ionics, 1997, 100: 259.
[142] Wen Z, Yang J, Wang B, Wang K, Liu Y. Electrochem. Commun., 2003, 5: 165.
[143] Guo Z, Milin E, Wang J, Chen J, Liu H. J. Electrochem. Soc., 2005, 152: A2211.
[144] Datta M K, Kumta P N. J. Power Sources, 2007, 165: 368.
[145] Lee J K, Kung M C, Trahey L, Missaghi M N, Kung H H. Chem. Mater., 2008, 21: 6.
[146] Datta M K, Kumta P N. J. Power Sources, 2006, 158: 557.
[147] Ng S, Wang J, Konstantinov K, Wexler D, Chew S, Guo Z, Liu H. J. Power Sources, 2007, 174: 823.
[148] Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schlgl R, Antonietti M, Maier J. Angew. Chem. Int. Ed., 2008, 47: 1645.
[149] Xu Y, Yin G, Ma Y, Zuo P, Cheng X. J. Mater. Chem., 2010, 20: 3216.
[150] Du C, Chen M, Wang L, Yin G. J. Mater. Chem., 2011, 21: 15692.
[151] Jung D S, Hwang T H, Park S B, Choi J W. Nano Lett., 2013, 13: 2092.
[152] Yin Y X, Xin S, Wan L J, Li C J, Guo Y G. J. Phys. Chem. C, 2011, 115: 14148.
[153] Ji L, Zhang X. Electrochem. Commun., 2009, 11: 1146.
[154] Zheng G, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11: 4462.
[155] Zhang C, Yu R, Zhou T, Chen Z, Liu H, Guo Z. Carbon, 2014, 72: 169.
[156] Kong J, Yee W A, Wei Y, Yang L, Ang J M, Phua S L, Wong S Y, Zhou R, Dong Y, Li X. Nanoscale, 2013, 5: 2967.
[157] Jeong G, Kim J G, Park M S, Seo M, Hwang S M, Kim Y U, Kim Y J, Kim J H, Dou S X. ACS Nano, 2014, 8: 2977.
[158] Wang W, Kumta P N. J. Power Sources, 2007, 172: 650.
[159] Gómez-Cámer J L, Morales J, Sánchez L. J. Mater. Chem., 2011, 21: 811.
[160] Wang B, Li X, Luo B, Zhang X, Shang Y, Cao A, Zhi L. ACS Appl. Mater. Interfaces, 2013, 5: 6467.
[161] Shu J, Li H, Yang R, Shi Y, Huang X. Electrochem. Commun., 2006, 8: 51.
[162] Kim T, Mo Y, Nahm K, Oh S M. J. Power Sources, 2006, 162: 1275.
[163] Jang S M, Miyawaki J, Tsuji M, Mochida I, Yoon S H. Carbon, 2009, 47: 3383.
[164] Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009, 9: 3370.
[165] Wang W, Kumta P N. ACS Nano, 2010, 4: 2233.
[166] Fan Y, Zhang Q, Xiao Q, Wang X, Huang K. Carbon, 2013, 59: 264.
[167] Zhao C, Li Q, Wan W, Li J, Li J, Zhou H, Xu D. J. Mater. Chem., 2012, 22: 12193.
[168] Hertzberg B, Alexeev A, Yushin G. J. Am. Chem. Soc., 2010, 132: 8548.
[169] Wang B, Li X, Qiu T, Luo B, Ning J, Li J, Zhang X, Liang M, Zhi L. Nano Lett., 2013, 13: 5578.
[170] Wang B, Li X, Zhang X, Luo B, Zhang Y, Zhi L. Adv. Mater., 2013, 25: 3560.
[171] Hasegawa T, Mukai S R, Shirato Y, Tamon H. Carbon, 2004, 42: 2573.
[172] Jung Y S, Lee K T, Oh S M. Electrochim. Acta, 2007, 52: 7061.
[173] Guo P, Zhu G, Song H, Chen X, Zhang S. Phys. Chem. Chem. Phys., 2011, 13: 17818.
[174] Zhu L, Zhang S, Cui Y, Song H, Chen X. Electrochim. Acta, 2013, 89: 18.
[175] Zhou J, Song H, Zhang X, Chen X. Chem. Commun., 2014, 50: 1886.
[176] Zhang S, Zhu L, Song H, Chen X, Zhou J. Nano Energy, 2014, 10: 172.
[177] Guo P, Song H, Chen X. Electrochem. Commun., 2009, 11: 1320.
[178] Du X, Guo P, Song H, Chen X. Electrochim. Acta, 2010, 55: 4812.
[179] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26:1233.
[180] Chou S L, Wang J Z, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2010, 12: 303.
[181] 李海(Li H), 吕春祥(Lü C X). 新型炭材料(New Carbon Materials), 2014, 29: 295.
[182] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 46: 2025.
[183] Wang J Z, Zhong C, Chou S L, Liu H K. Electrochem. Commun., 2010, 12: 1467.
[184] Tao H C, Fan L Z, Mei Y, Qu X. Electrochem. Commun., 2011, 13: 1332.
[185] Wang B, Li X, Luo B, Jia Y, Zhi L. Nanoscale, 2013, 5: 1470.
[186] Wang B, Li X, Zhang X, Luo B, Jin M, Liang M, Dayeh S A, Picraux S, Zhi L. ACS Nano, 2013, 7: 1437.
[187] Evanoff K, Magasinski A, Yang J, Yushin G. Adv Energy Mater., 2011, 1: 495.
[188] Ren J G, Wu Q H, Hong G, Zhang W J, Wu H, Amine K, Yang J, Lee S T. Energy Technol., 2013, 1: 77.
[189] Zhou X, Yin Y X, Wan L J, Guo Y G. Chem. Commun., 2012, 48: 2198.
[190] Zhou X, Yin Y X, Cao A M, Wan L J, Guo Y G. ACS Appl. Mater. Interfaces, 2012, 4: 2824.
[191] He Y S, Gao P, Chen J, Yang X, Liao X Z, Yang J, Ma Z F. RSC Adv., 2011, 1: 958.
[192] Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z. J. Mater. Chem., 2012, 22: 7724.
[193] Luo J, Zhao X, Wu J, Jang H D, Kung H H, Huang J. J. Phys. Chem. Lett., 2012, 3: 1824.
[194] Wen Y, Zhu Y, Langrock A, Manivannan A, Ehrman S H, Wang C. Small, 2013, 9: 2810.
[195] Zhou X, Yin Y X, Wan L J, Guo Y G. Adv. Energy Mater., 2012, 2: 1086.
[196] Zhu Y, Liu W, Zhang X, He J, Chen J, Wang Y, Cao T. Langmuir, 2013, 29: 744.
[197] Lee W, Hwang T, Hwang J, Kim H, Lim J, Jeong H, Shim J, Han T, Kim J, Choi J, Kim S. Energy Environ. Sci., 2014, 7: 621.
[198] Chang J, Huang X, Zhou G, Cui S, Hallac P B, Jiang J, Hurley P T, Chen J. Adv. Mater., 2014, 26: 758.
[199] Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y. J. Power Sources, 2005, 146: 156.
[200] Kim I S, Kumta P, Blomgren G. Electrochem. Solid-State Lett., 2000, 3: 493.
[201] Yang J, De Guzman R C, Salley S O, Ng K S, Chen B H, Cheng M M C. J. Power Sources, 2014, 269: 520.
[202] Patel P, Kim I S, Kumta P. Mater. Sci. Eng. B, 2005, 116: 347.
[203] Kim I S, Blomgren G, Kumta P. J. Power Sources, 2004, 130: 275.
[204] Jeon B J, Lee J K. Electrochim. Acta, 2011, 56: 6261.
[205] Zhang X, Pan G, Li G, Qu J, Gao X. Solid State Ionics, 2007, 178: 1107.
[206] Guo Z, Wang J, Liu H, Dou S. J. Power Sources, 2005, 146: 448.
[207] Chew S, Guo Z, Wang J, Chen J, Munroe P, Ng S, Zhao L, Liu H. Electrochem. Commun., 2007, 9: 941.
[208] Du Z, Zhang S, Liu Y, Zhao J, Lin R, Jiang T. J. Mater. Chem., 2012, 22: 11636.
[209] Cai J J, Zuo P J, Cheng X Q, Xu Y H, Yin G P. Electrochem. Commun., 2010, 12: 1572.
[210] Wu H, Yu G, Pan L, Liu N, Mcdowell M T, Bao Z, Cui Y. Nat. Commun., 2013, 4: 1943.
[211] 孙鹏(Sun P), 宋怀河(Song H H), 周继升(Zhou J S), 陈晓红(Chen X H), 张洪坤(Zhang H K), 武斌(Wu B). 炭素技术(Carbon Techniques), 2012, 31: 5.
[212] Li J, Christensen L, Obrovac M, Hewitt K, Dahn J. J. Electrochem. Soc., 2008, 155: A234.
[213] Hassan F M, Chabot V, Elsayed A R, Xiao X, Chen Z. Nano Lett., 2013, 14: 277.
[214] Yoshio M, Tsumura T, Dimov N. J. Power Sources, 2005, 146: 10.
[215] Kim Y L, Sun Y K, Lee S M. Electrochim. Acta, 2008, 53: 4500.
[216] Zhou X, Cao A M, Wan L J, Guo Y G. Nano Res., 2012, 5: 845.
[217] Tang H, Tu J P, Liu X Y, Zhang Y J, Huang S, Li W Z, Wang X L, Gu C D. J. Mater. Chem. A, 2014, 2: 5834.
[218] Choi N S, Yew K H, Choi W U, Kim S S. J. Power Sources, 2008, 177: 590.
[219] Park H K, Kong B S, Oh E S. Electrochem. Commun., 2011, 13: 1051.
[220] Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. Electrochem. Commun., 2007, 9: 2801.
[221] Hochgatterer N, Schweiger M, Koller S, Raimann P, Whrle T, Wurm C, Winter M. Electrochem. Solid-State Lett., 2008, 11: A76.
[222] Bridel J S, Azais T, Morcrette M, Tarascon J M, Larcher D. Chem. Mater., 2009, 22: 1229.
[223] Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner C F, Fuller T F, Luzinov I, Yushin G. ACS Appl. Mater. Interfaces, 2010, 2: 3004.
[224] Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75.
[225] Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. Angew. Chem. Int. Ed., 2012, 51: 8762.
[226] Ryou M H, Kim J, Lee I, Kim S, Jeong Y K, Hong S, Ryu J H, Kim T S, Park J K, Lee H. Adv. Mater., 2013, 25: 1571.
[227] Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia V S, Wang L, Yang W. Adv. Mater., 2011, 23: 4679.
[228] Wang C, Wu H, Chen Z, Mcdowell M T, Cui Y, Bao Z. Nat. Chem., 2013, 5: 1042.
[229] Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94: 189.
[230] Dalavi S, Guduru P, Lucht B L. J. Electrochem. Soc., 2012, 159: A642.
[231] Han G B, Ryou M H, Cho K Y, Lee Y M, Park J K. J. Power Sources, 2010, 195: 3709.
[232] Chen L, Wang K, Xie X, Xie J. J. Power Sources, 2007, 174: 538.
[233] Li M Q, Qu M Z, He X Y, Yu Z L. Electrochim. Acta, 2009, 54: 4506.
[234] Choi N S, Yew K H, Lee K Y, Sung M, Kim H, Kim S S. J. Power Sources, 2006, 161: 1254.
[235] Nakai H, Kubba T, Kita A, Kawashima A. J. Electrochem. Soc., 2011, 158: A798.
[236] Buddieámullins C. Chem. Commun., 2012, 48: 7268.
[237] Chockla A M, Klavetter K C, Mullins C B, Korgel B A. Chem. Mater., 2012, 24: 3738.
[238] Bordes A, Eom K, Fuller T F. J. Power Sources, 2014, 257: 163.
[239] Nie M, Abraham D P, Chen Y, Bose A, Lucht B L. J. Phys. Chem. C, 2013, 117: 13403.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[10] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[11] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[12] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[13] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[14] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
阅读次数
全文


摘要

硅基锂离子电池负极材料