English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1313-1323 DOI: 10.7536/PC150145 前一篇   后一篇

• 综述与评论 •

柔性场发射阴极材料

陈善亮1,2, 应鹏展1, 尉国栋2, 杨为佑2*   

  1. 1. 中国矿业大学化工学院 徐州 221116;
    2. 宁波工程学院材料学院 宁波 315016
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 杨为佑 E-mail:weiyouyang@tsinghua.org.cn
  • 基金资助:
    国家自然科学基金项目(No. 51372123)资助

Flexible Field Emission Cathode Materials

Chen Shanliang1,2, Ying Pengzhan1, Wei Guodong2, Yang Weiyou2*   

  1. 1. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China;
    2. School of Materials, Ningbo University of Technology, Ningbo 315016, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51372123).
柔性场发射阴极材料因其独特的可变形和弯曲特性,在电子织物、分布式传感器、纸上显示器以及建筑物表面的大型弯曲显示等领域,具有广泛的发展前景。利用纳米半导体组元构建兼具机械柔性和优越性能的功能柔性系统,是当前活跃的研究热点之一。本文概述了基于低维纳米结构的柔性场发射阴极材料的基本特点,阐述了以聚合物、石墨烯、碳纤维布等典型衬底材料制备场发射阴极材料的最新研究动态,论述了其在显示器和X射线管中的应用进展,对其今后的发展方向进行了展望。
The flexible field emission cathode materials, with the unique advancements of deformability and bendability, have wide potential applications in the fields of electronic textiles, distributed sensors, paper displays and the large bending displays on building surface. Thus, the investigation on the flexible device systems, based on the semiconductor nanostructures with both high flexibility and excellent performance, becomes one of the hot research topics currently. In the present review, we firstly provide a brief introduction to the major features of the flexible field emission cathode materials. Then we make a comprehensive review on the research progresses focused on the fabrications of the flexible field emission cathode materials grown on the typical substrates of polymers, graphenes and carbon fabrics. Subsequently, we shed some lights on the potential applications of the flexible cathodes in the field emission displays and X-ray tubes. Finally, the future development directions of the flexible field emission cathode materials are prospected.

Contents
1 Introduction
2 The characteristics of flexible field emission cathode
2.1 Bendability
2.2 Ductility
3 Preparation and properties of flexible field emission cathode materials
3.1 Flexible polymer
3.2 Graphene
3.3 Carbon cloth
4 The applications of flexible cathode
4.1 Field emission display
4.2 X-ray tube
5 Conclusion and outlook

中图分类号: 

()
[1] Fowler R H, Nordheim L. Proc. R. Soc. London, Ser A, 1928, 781: 173.
[2] Hwang J O, Lee D H, Kim J Y, Han T H, Kim B H, Park M, No K, Kim S O. J. Mater. Chem., 2011, 10: 3432.
[3] She J, Xiao Z, Yang Y, Deng S, Chen J, Yang G, Xu N. ACS Nano, 2008, 10: 2015.
[4] Zhang X, Chen Y, Xie Z, Yang W. J. Phys. Chem. C, 2010, 18: 8251.
[5] Deng J, Zheng R, Yang Y, Zhao Y, Cheng G. Carbon, 2012, 50 (12): 4732.
[6] Lee D H, Lee J A, Lee W J, Choi D S, Lee W J, Kim S O. J. Phys. Chem. C, 2010, 49: 21184.
[7] Lee D H, Lee J A, Lee W J, Kim S O. Small, 2011, 1: 95.
[8] Wu Z, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng H. Adv. Mater., 2009, 17: 1756.
[9] Huang C K, Ou Y, Bie Y, Zhao Q, Yu D. Appl. Phys. Lett., 2011, 98: 263104.
[10] Wei G, Liu H, Shi C, Gao F, Zheng J, Wei G, Yang W. J. Phys. Chem. C, 2011, 26: 13063.
[11] Song X, Guo Z, Zheng J, Li X, Pu Y. Nanotechnology, 2008, 11: 115609.
[12] Huang A, Chu P K, Wu X. Appl. Phys. Lett., 2006, 25: 251103.
[13] Fang X, Zhai T, Gautam U K, Li L, Wu L, Bando Y, Golberg D. Prog. Mater. Sci., 2011, 2: 175.
[14] Chen Z, Cheng L, Xu H, Liu J, Zou J, Sekiguchi T, Lu G Q M, Cheng H. Adv. Mater., 2010, 21: 2376.
[15] Liu P, Wei Y, Liu K, Liu L, Jiang K, Fan S. Nano Lett. 2012, 5: 2391.
[16] Kim D H, Kim C D, Lee H R. Carbon, 2004, 8: 1807.
[17] Heo S H, Ihsan A, Cho S O. Appl. Phys. Lett., 2007, 18: 183109.
[18] Zhang Y, Lau S, Huang L, Tanemura M. Appl. Phys. Lett. 2005, 12: 123115.
[19] De Jonge N, Lamy Y, Schoots K, Oosterkamp T H. Nature, 2002, 6914: 393.
[20] Lee S, Im W B, Kang J H, Jeon D Y. J. Vac. Sci. Technol. B 2005, 2: 745.
[21] Jeong H J, Jeong H D, Kim H Y, Kim S H, Kim J S, Jeong S Y, Han J T, Lee G. Small, 2012, 2: 272.
[22] Kim K S, Zhao Y, Jang H, Lee S. Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 7230: 706.
[23] Lahiri I, Verma V P, Choi W. Carbon, 2011, 5: 1614.
[24] Tan T, Sim H, Lau S, Yang H, Tanemura M, Tanaka J. Appl. Phys. Lett., 2006, 10: 103105.
[25] Wu R, Zhou K, Wei J, Huang Y, Su F, Chen J, Wang L. J. Phys. Chem. C, 2012, 23: 12940.
[26] Baby T T, Ramaprabhu S. Appl. Phys. Lett., 2011, 18:183111.
[27] Chen S, Ying P, Wang L, Wei G, Zheng J, Gao F, Su S, Yang W. J. Mater. Chem. C, 2013, 1: 4779.
[28] Tsai T, Lee C, Tai N, Tuan W. Appl. Phys. Lett., 2009, 1: 013107.
[29] Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S, Hong S H, Lee W J, Ruoff R S, Kim S O. Adv. Mater., 2010, 11: 1247.
[30] Hirakawa H, Ishimoto M, Awamoto K, Shinoda T. J. Display Technol., 2010, 9: 381.
[31] Das S, Seelaboyina R, Verma V, Lahiri I, Hwang J Y, Banerjee R, Choi W. J. Mater. Chem., 2011, 20: 7289.
[32] Zeng H, Xu X, Bando Y, Gautam U K, Zhai T, Fang X, Liu B, Golberg D. Adv. Funct. Mater., 2009, 19: 3165.
[33] Wang X, Zhou J, Lao C, Song J, Xu N, Wang Z L. Adv. Mater., 2007, 12: 1627.
[34] Liu N, Fang G, Zeng W, Zhou H, Long H, Zhao X. J. Mater. Chem., 2012, 8: 3478.
[35] Sim H, Lau S, Yang H, Ang L, Tanemura M, Yamaguchi K. Appl. Phys. Lett., 2007, 14: 143103.
[36] Jung Y J, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou F S, Avadhanula A, Vajtai R. Nano Lett., 2006, 3: 413.
[37] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 7152: 457.
[38] Park S, Lee K, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 3: 572.
[39] Jeong H J, Jeong H D, Kim H Y, Kim J S, Jeong S Y, Han J T, Bang D S, Lee G W. Adv. Funct. Mater., 2011, 8: 1526.
[40] Stratakis E, Kymakis E, Spanakis E, Tzanetakis P, Koudoumas E. Phys. Chem. Chem. Phys., 2009, 4: 703.
[41] Hallam T, Cole M T, Milne W I, Duesberg G S. Small, 2014, 1: 95.
[42] Yang H, Lau S, Yu S, Huang L, Tanemura M, Tanaka J, Okita T, Hng H. Nanotechnology, 2005, 8: 1300.
[43] Lee Y D, Lee H J, Han J H, Yoo J E, Lee Y, Kim J K, Nahm S, Ju B. J. Phys. Chem. B, 2006, 11: 5310.
[44] Ghosh P, Yusop M Z, Satoh S, Subramanian M, Hayashi A, Hayashi Y, Tanemura M. J. Am. Chem. Soc.,2010, 12: 4034.
[45] Hofmann S, Ducati C, Kleinsorge B, Robertson J. Appl. Phys. Lett., 2003, 22: 4661.
[46] Ghosh D, Ghosh P, Tanemura M, Haysahi A, Hayashi Y, Shinji K, Miura N, Yusop M Z, Asaka T. Chem. Commun., 2011, 17: 4980.
[47] Hsu C L, Su C W, Hsueh T J. RSC Adv., 2014, 6: 3043.
[48] Pradhan D, Kumar M, Ando Y, Leung K T J. Phys. Chem. C, 2008, 18: 7093.
[49] Cui J, Daghlian C, Gibson U, Pusche R, Geithner P, Ley L. J. Appl. Phys., 2005, 4: 044315.
[50] Nasibulin A G, Ollikainen A, Anisimov A S, Brown D P, Pikhitsa P V, Holopainen S, Penttil J S, Helist P, Ruokolainen J, Choi M. Chem. Eng. J., 2008, 2: 409.
[51] Yoon B J, Hong E H, Jee S E, Yoon D M, Shim D S, Son G Y, Lee Y J, Lee K H, Kim H S, Park C G. J. Am. Chem. Soc., 2005, 23: 8234.
[52] Hong N T, Yim J H, Koh K H, Lee S, Minh P N, Khoi P H. J. Vac. Sci. Technol. B, 2008, 2: 778.
[53] Chang-Jian S, Ho J, Cheng J. Solid State Commun., 2010, 13: 666.
[54] Song C, Yu K, Yin H, Fu H, Zhang Z, Zhang N, Zhu Z. J. Mater. Chem. C, 2014, 21: 4196.
[55] Wang C, Chen T, Chang S, Chin T, Cheng S. Appl. Phys. Lett., 2007, 10: 103111.
[56] Yaglioglu O, Martens R, Hart A. J, Slocum A H. Adv. Mater., 2008, 2: 357.
[57] Zhu L, Sun Y, Hess D W, Wong C P. Nano Lett., 2006, 2: 243.
[58] Kang S J, Kocabas C, Kim H S, Cao Q, Meitl M. A, Khang D Y, Rogers J A. Nano Lett., 2007, 11: 3343.
[59] Goswami S, Maiti U, Maiti S, Nandy S, Mitra M, Chattopadhyay K. Carbon, 2011, 7: 2245.
[60] Choi W M, Shin K S, Lee H S, Choi D, Kim K, Shin H J, Yoon S M, Choi J Y, Kim S W. Nano Res., 2011, 5: 440.
[61] Lock E H, Baraket M, Laskoski M, Mulvaney S P, Lee W K, Sheehan P E, Hines D R, Robinson J T, Tosado J, Fuhrer M S. Nano Lett., 2011, 1: 102.
[62] Nguyen D D, Tai N H, Chen S Y, Chueh Y L. Nanoscale, 2012, 2: 632.
[63] Verma V P, Das S, Lahiri I, Choi W. Appl. Phys. Lett., 2010, 20: 203108.
[64] Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly K F, Ajayan P M. Chem. Mater., 2010, 11: 3457.
[65] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I. Nat. Nanotech., 2010, 8: 574.
[66] Arif M, Heo K, Lee B. Y, Lee J, Seo D H, Seo S, Jian J, Hong S. Nanotechnology, 2011, 35: 355709.
[67] Zhang X, Gong L, Liu K, Cao Y, Xiao X, Sun W, Hu X, Gao Y, Chen J, Zhou J. Adv. Mater., 2010, 46: 5292.
[68] Yuan L, Tao Y, Chen J, Dai J, Song T, Ruan M, Ma Z, Gong L, Liu K, Zhang X. Adv. Funct. Mater., 2011, 11: 2150.
[69] Maiti U, Maiti S, Thapa R, Chattopadhyay K. Nanotechnology, 2010, 50: 505701.
[70] Das S, Saha S, Sen D, Ghorai U K, Banerjee D, Chattopadhyay K K. J. Mater. Chem. C, 2014, 7: 1321.
[71] Chen S, Ying P, Wang L, Gao F, Wei G, Zheng J, Xie Z, Yang W. RSC Adv., 2014, 16: 8376.
[72] Chen S, Ying P, Wang L, Wei G, Yang W. Appl. Phys. Lett., 2014, 13: 133106.
[73] Cheng T C. Mater. Chem. Phys., 2012, 136: 140.
[74] Chuang F T, Chen P, Cheng T, Chien C, Li B. Nanotechnology, 2007, 39: 395702.
[75] Lyth S, Hatton R, Silva S. Appl. Phys. Lett., 2007, 1: 013120.
[76] Zhang X, Chen Y, Liu W, Xue W, Li J, Xie Z. J. Mater. Chem. C, 2013, 39: 6479.
[77] Paul S, Kim D W. Carbon, 2009, 10: 2436.
[78] Ghosh D, Ghosh P, Yusop M Z, Tanemura M, Hayashi Y, Tsuchiya T, Nakajima T. Phys. Status Solidi RRL, 2012, 7: 303.
[79] Li Y K, Zhu C C, Li X H. Diam. Relat. Mater., 2002, 11: 1845.
[80] Kim S, Cho E, Han S, Cho Y, Cho S H, Kim C, Ihm J. Solid State Commun., 2009, 17: 670.
[81] Kim D H, Yang H S, Kang H D, Lee H R. Chem. Phys. Lett., 2003, 3: 439.
[82] Kuznetzov A, Lee S B, Zhang M, Baughman R H, Zakhidov A. Carbon, 2010, 1: 41.
[83] Cairns D R, Crawford G. P. P. IEEE, 2005, 8: 1451.
[84] Alzoubi K, Lu S, Sammakia B, Poliks M. J. Display Technol., 2011, 6: 348.
[85] Senda S, Sakai Y, Mizuta Y, Kita S, Okuyama F. Appl. Phys. Lett., 2004, 23: 5679.
[86] Beatty J, Biggs P, Gall K, Okunieff P, Pardo F, Harte K, Dalterio M, Sliski A. Med. Phys., 1996, 23: 53.
[87] Matsumoto T, Mimura H. Appl. Phys. Lett., 2003, 10: 1637.
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[9] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[10] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[11] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[12] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[13] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[14] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
阅读次数
全文


摘要

柔性场发射阴极材料