English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1230-1239 DOI: 10.7536/PC150138 前一篇   后一篇

• 综述与评论 •

基于芘的离子荧光化学传感器

钟克利1, 郭宝峰1, 周雪1, 蔡克迪1, 汤立军1*, 金龙一2*   

  1. 1. 渤海大学化学化工与食品安全学院 辽宁省食品安全重点实验室 锦州 121013;
    2. 长白山生物资源与功能分子教育部重点实验室 延边大学理学院化学系 延吉 133002
  • 收稿日期:2015-01-01 修回日期:2015-05-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 汤立军, 金龙一 E-mail:ljtang@bhu.edu.cn;lyjin@ybu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21304009, 21476029, 21176029, 21164013), 辽宁省高等学校优秀人才支持计划 (No. LJQ2014125, LR2015001), “十二五”国家科技支撑计划(No. 2012BAD29B06)和辽宁省食品安全重点实验室开放课题(No. LNSAKF2011025)资助

Ionics Fluorescent Chemsensor Based on Pyrene

Zhong Keli1, Guo Baofeng1, Zhou Xue1, Cai Kedi1, Tang Lijun1*, Jin Longyi2*   

  1. 1. College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China;
    2. Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China
  • Received:2015-01-01 Revised:2015-05-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work is supported by the National Natural Science Foundation of China (No.21304009,21476029,21176029,21164013), the Program for Liaoning Excellent Talents in University (No.LJQ2014125,LR2015001), the National Key Technologies R&D Program of China during the 12th Five-Year Plan Period(No. 2012BAD29B06), and the Food Safety Key Laboratory of Liaoning Province (No. LNSAKF2011025).
芘是一种简单的芳香化合物,在溶液中可形成动态的和静态的激基缔合物,在长波长处出现荧光发射峰。利用单体和激基缔合物荧光波长的不同,芘常被用作荧光团来合成各种荧光化学传感器。本文对基于芘的荧光化学传感器的研究进展进行综述,主要包括其在单一阳离子、双阳离子和阴离子识别检测中的分子设计、作用机理和应用,并对该类荧光化学传感器的发展前景进行了展望。
Pyrene is a simple aromatic molecule, and it can easily form dynamic and static excimer in solution, which shows long wavelength fluorescence emission. Owing to the different fluorescence emission wavelengths of pyrene monomer and excimer, pyrene is often used as fluorophore for the synthesis of various fluorescent sensors. The progress of pyrene-based fluorescent chemosensors, including the molecular design, mechanism and their application to single-cation, dication as well as anion recognition are summarized. The developing prospect of this type of fluorescent chemosensor is envisaged in this review.

Contents
1 Introduction
2 Fluorescence sensors for single-cation
2.1 Fluorescent sensors for Hg2+ 2.2 Fluorescent sensors for Cu2+ 2.3 Fluorescent sensors for Zn2+ 2.4 Fluorescent sensors for Ag+ 2.5 Fluorescent sensors for other single-cation 3 Fluorescence sensors for dication
3.1 Fluorescent sensors for Hg2+,Cu2+ 3.2 Fluorescent sensors for Hg2+,Pb2+ 3.3 Fluorescent sensors for other dication
4 Fluorescent sensors for anion
5 Conclusion

中图分类号: 

()
[1] Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev., 2013, 42(8): 3489.
[2] Li X, Gao X, Shi W, Ma H. Chem. Rev., 2014, 114(1): 590.
[3] Vendrell M, Zhai D, Er J C, Chang Y T. Chem. Rev., 2012, 112(8): 4391.
[4] Wenzel M, Hiscock J R, Gale P A. Chem. Soc. Rev., 2012, 41(1): 480.
[5] 王红(Wang H), 张华山(Zhang H S). 化学进展(Progress in Chemistry), 2007, 19(5): 633.
[6] Formica M, Fusi V, Giorgi L, Micheloni M. Coord. Chem. Rev., 2012, 256(1/2): 170.
[7] 钱小红(Qian X H), 金灿(Jin Can), 张晓宁(Zhang X N), 姜艳(Jiang Y), 林晨(Lin C), 王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2014, 26(10): 1701.
[8] Chen X, Zhou G, Peng X, Yoon J. Chem. Soc. Rev., 2012, 41(13): 4610.
[9] Chen X, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112(3): 1910.
[10] Zhong K, Zhou X, Hou R, Zhou P, Hou S, Bian Y, Zhang G, Tang L, Shang X. RSC Adv., 2014, 4(32): 16612.
[11] Lau Y H, Rutledge P J, Watkinson M, Todd M H. Chem. Soc. Rev., 2011, 40(5): 2848.
[12] Kim H N, Guo Z, Zhu W, Yoon J, Tian H. Chem. Soc. Rev., 2011, 40(1): 79.
[13] Zhang J F, Zhou Y, Yoon J, Kim J S. Chem. Soc. Rev., 2011, 40(7): 3416.
[14] Xu Z, Yoon J, Spring D R. Chem. Soc. Rev., 2010, 39(6): 1996.
[15] Kim J S, Choi M G, Song K C, No K T, Ahn S, Chang S K. Org. Lett., 2007, 9(6): 1129.
[16] Zhou Y, Zhu C Y, Gao X S, You X Y, Yao C. Org. Lett., 2010, 12(11): 2566.
[17] Ahamed B N, Ghosh P. Inorg. Chim. Acta, 2011, 372(1): 100.
[18] Sola A, Otón F, Espinosa A, Tárraga A, Molina P. Dalton Trans., 2011, 40(46): 12548.
[19] Yang M H, Thirupathi P, Lee K H. Org. Lett., 2011, 13(19): 5028.
[20] Sivaraman G, Anand T, Chellappa D. RSC Adv., 2012, 2(28): 10605.
[21] Wang H F, Wu S P. Tetrahedron, 2013, 69(8): 1965.
[22] Chen L, Zheng B, Guo Y, Du J, Xiao D, Bo L. Talanta, 2013, 117: 338.
[23] Xie J, Ménand M, Maisonneuve S, Métivier R. J. Org. Chem., 2007, 72(16): 5980.
[24] Jung H S, Park M, Han D Y, Kim E, Lee C, Ham S, Kim J S. Org. Lett., 2009, 11(15): 3378.
[25] Zhou Y, Wang F, Kim Y, Kim S J, Yoon J. Org. Lett., 2009, 11(19): 4442.
[26] Wu S P, Huang Z M, Liu S R, Chung P K. J. Fluoresc., 2012, 22(1): 253.
[27] Fernández-Lodeiro J, Nuúñez C, de Castro C S, Bértolo E, Seixas de Melo J S R, Capelo J L, Lodeiro C. Inorg. Chem., 2012, 52(1): 121.
[28] Li N, Xiang Y, Chen X, Tong A. Talanta, 2009, 79(2): 327.
[29] Zhou Y, Kim H N, Yoon J. Bioorg. Med. Chem. Lett., 2010, 20(1): 125.
[30] Ingale S A, Seela F. J. Org. Chem., 2012, 77(20): 9352.
[31] Choi J Y, Kim D, Yoon J. Dyes Pigm., 2013, 96(1): 176.
[32] Yang R H, Chan W H, Lee A W, Xia P F, Zhang H K, Ani K. J. Am. Chem. Soc., 2003, 125(10): 2884.
[33] Liu L, Zhang D, Zhang G, Xiang J, Zhu D. Org. Lett., 2008, 10(11): 2271.
[34] Pandey M D, Mishra A K, Chandrasekhar V, Verma S. Inorg. Chem., 2010, 49(5): 2020.
[35] Jang S, Thirupathi P, Neupane L N, Seong J, Lee H, Lee W I, Lee K H. Org. Lett., 2012, 14(18): 4746.
[36] Wang F, Nandhakumar R, Moon J H, Kim K M, Lee J Y, Yoon J. Inorg. Chem., 2011, 50(6): 2240.
[37] Sahana A, Banerjee A, Lohar S, Guha S, Das S, Mukhopadhyay S K, Das D. Analyst, 2012, 137(17): 3910.
[38] Thakur A, Mandal D, Ghosh S. Anal. Chem., 2013, 85(3): 1665.
[39] Jing L, Liang C, Shi X, Ye S, Xian Y. Analyst, 2012, 137(7): 1718.
[40] Chung P K, Liu S R, Wang H F, Wu S P. J. Fluoresc., 2013, 23(6): 1139.
[41] Das S, Sahana A, Banerjee A, Lohar S, Safin D A, Babashkina M G, Bolte M, Garcia Y, Hauli I, Mukhopadhyay S K. Dalton Trans., 2013, 42(14): 4757.
[42] Nath S, Maitra U. Org. Lett., 2006, 8(15): 3239.
[43] Martínez R, Espinosa A, Tárraga A, Molina P. Org. Lett., 2005, 7(26): 5869.
[44] Martínez R, Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P. Org. Lett., 2006, 8(15): 3235.
[45] Martínez R, Espinosa A, Tárraga A, Molina P. Tetrahedron, 2010, 66(21): 3662.
[46] Lee M H, Kang G, Kim J W, Ham S, Kim J S. Supramol. Chem., 2009, 21(1/2): 135.
[47] Cao Y, Ding L, Hu W, Wang L, Fang Y. Appl. Surf. Sci., 2013, 273: 542.
[48] Kumari N, Dey N, Jha S, Bhattacharya S. ACS Appl. Mat. Interfaces, 2013, 5(7): 2438.
[49] Neupane L N, Park J Y, Park J H, Lee K H. Org. Lett., 2013, 15(2): 254.
[50] Otón F, González M A D C, Espinosa A, Ramírez de Arellano C, Tárraga A, Molina P. J. Org. Chem., 2012, 77(22): 10083.
[51] Kim J S, Shon O J, Rim J A, Kim S K, Yoon J. J. Org. Chem., 2002, 67(7): 2348.
[52] Park S Y, Yoon J H, Hong C S, Souane R, Kim J S, Matthews S E, Vicens J. J. Org. Chem., 2008, 73(21): 8212.
[53] Cho J, Pradhan T, Kim J S, Kim S. Org. Lett., 2013, 15(16): 4058.
[54] Yuasa H, Miyagawa N, Izumi T, Nakatani M, Izumi M, Hashimoto H. Org. Lett., 2004, 6(9): 1489.
[55] Hung H C, Cheng C W, Wang Y Y, Chen Y J, Chung W S. Eur. J. Org. Chem., 2009, 2009(36): 6360.
[56] Sun X, Wang Y W, Peng Y. Org. Lett., 2012, 14(13): 3420.
[57] Kim S K, Bok J H, Bartsch R A, Lee J Y, Kim J S. Org. Lett., 2005, 7(22): 4839.
[58] Gai L, Chen H, Zou B, Lu H, Lai G, Li Z, Shen Z. Chem. Commun., 2012, 48(87): 10721.
[59] Schazmann B, Alhashimy N, Diamond D. J. Am. Chem. Soc., 2006, 128(26): 8607.
[60] Suzuki I, Ui M, Yamauchi A. J. Am. Chem. Soc., 2006, 128(14): 4498.
[1] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[2] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[3] 张浩, 刘静, 崔崑, 姜涛, 马志. 含胍基抗菌聚合物的合成及应用[J]. 化学进展, 2019, 31(5): 681-689.
[4] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[5] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[6] 张金帅, 于凤丽, 袁冰, 解从霞, 于世涛. 溶剂在反应控制相转移催化反应中的影响[J]. 化学进展, 2018, 30(2/3): 304-313.
[7] 张宁, 厉英. 富锂层状氧化物正极材料:结构、容量产生机理及改性[J]. 化学进展, 2017, 29(4): 373-387.
[8] 刘雯, 张立, 杨静, 郝雪芳, 李茜, 冯亚凯. 靶向性载体/基因复合物促进内皮细胞增殖[J]. 化学进展, 2016, 28(6): 954-960.
[9] 余响林, 陈小姣, 张碧玉, 饶聪, 何源, 黎俊波. 基于有序介孔材料的荧光探针及其应用[J]. 化学进展, 2016, 28(6): 896-907.
[10] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[11] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[12] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[13] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[14] 鲍寅寅, 白如科*. 基于有机硅化合物的反应型氟离子荧光化学传感器[J]. 化学进展, 2013, 25(0203): 288-295.
[15] 李鹏章, 王粤博*. 蛋白质组学中磷酸化肽的常用富集方法[J]. 化学进展, 2012, (9): 1785-1793.
阅读次数
全文


摘要

基于芘的离子荧光化学传感器