English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 882-912 DOI: 10.7536/PC150121 前一篇   后一篇

• 综述与评论 •

基于微流控技术的循环肿瘤细胞分选研究

黄笛, 项楠, 唐文来, 张鑫杰, 倪中华*   

  1. 东南大学 江苏省微纳生物医疗器械设计与制造重点实验室 南京 211189
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 倪中华 E-mail:nzh2003@seu.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No.2011CB707601), 国家自然科学基金项目(No.51375089)和江苏省普通高校研究生创新计划项目(No.CXLX13_080).

Microfluidics-Based Circulating Tumor Cells Separation

Huang Di, Xiang Nan, Tang Wenlai, Zhang Xinjie, Ni Zhonghua*   

  1. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Basic Research Program of China (No.2011CB707601), the National Natural Science Foundation of China(No.51375089), and the Jiangsu Graduate Innovative Research Program(No.CXLX13_080).
循环肿瘤细胞(CTCs)出现于癌症患者的外周血中,是一种重要的游离态组织样本,对于癌症的早期诊断和预后评估具有非常重要的临床诊断价值。由于血液中CTCs含量极少,对其进行分选富集是CTCs检测和分析的一个重要预处理步骤。传统的宏观方法虽然也能实现细胞分离,但存在耗时长、样品需求量大、目标细胞损失严重及硬件设备依赖性高等不足。近年来兴起的微流控技术可在微米尺度范围内集成物理、化学及生物手段,易于实现整体器件的微型化和低成本便携式发展,为稀有CTCs的高灵敏度、高效分选提供重要的潜在技术手段。本文综述了微流控技术实现CTCs分选的最新研究进展,详细阐述了各种被动、主动分选方法的原理及成功应用实例,分析各方法的优缺点,提出一种新型的多级分选芯片结构,并最后探讨了微流控CTCs分选芯片在临床应用中面临的挑战及未来的发展趋势。
Circulating tumor cells (CTCs), a “liquid biopsy” circulating in the cancer patients' peripheral blood, play an important role in the therapeutic and diagnostic of cancer. Due to the extremely low concentration of CTCs in blood, enrichment has been regarded as an essential pre-treament step for efficient detection of CTCs. Traditional macroscopic separation schemes have achieved a large success in CTCs enrichment. However, these methods still suffer from some disadvantages such as time consuming, large volume blood samples required, easy to lose target cells and labor-intensive. Microfluidics, which integrates physical, chemical and biological technologies at microscale level, provides a miniaturized, low-cost and protable tool for efficient CTCs separation. In this review, we cover the recent advances in passive and active microfluidic CTCs separation methods. The detail working principles, biomedical applications, advantages and drawbacks of these methods are discussed, and a novel multistage microfluidic chip for CTCs separation is also proposed. Finally, we discuss the critical concerns and the future trends of CTCs separation microfluidic devices in clinical applications.

Contents
1 Introduction
2 Passive separation techniques
2.1 Microscale filtration
2.2 Field flow and hydrodynamic fractionation
2.3 Deterministic lateral displacement
2.4 Inertia separation
2.5 Biomimetic separation
2.6 Affinity separation
3 Positive separation techniques
3.1 Dielectrophoresis separation
3.2 Magnetic separation
3.3 Acoustic separation
3.4 Optical separation
4 Multistage separation
5 Conclusion and outlook

中图分类号: 

()
[1] Aggarwal C, Meropol N J, Punt C J, Iannotti N, Saidman B H, Sabbath K D, Gabrail N Y, Picus J, Morse M A, Mitchell E, Miller M C, Cohen S J. Ann. Oncol., 2013, 24: 420.
[2] Ross A A, Cooper B W, Lazarus H M, Mackay W, Moss T J, Ciobanu N, Tallman M S, Kennedy M J, Davidson N E, Sweet D, Winter C, Akard L, Jansen J, Copelan E, Meagher R C, Herzig R H, Klumpp T R, Kahn D G, Warner N E. Blood, 1993, 82: 2605.
[3] Bilkenroth U, Taubert H, Riemann D, Rebmann U, Heynemann H, Meye A. Int. J. Cancer, 2001, 92: 577.
[4] Molnar B, Ladanyi A, Tanko L, Sreter L, Tulassay Z. Clin. Cancer Res., 2001, 7: 4080.
[5] Naoe M, Ogawa Y, Morita J, Omori K, Takeshita K, Shichijyo T, Okumura T, Igarashi A, Yanaihara A, Iwamoto S, Fukagai T, Miyazaki A, Yoshida H. Cancer (Hoboken, NJ, U. S.), 2007, 109: 1439.
[6] Mehlen P, Puisieux A. Nat. Rev. Cancer, 2006, 6: 449.
[7] Pantel K, Alix-Panabieres C. Trends Mol. Med., 2010, 16: 398.
[8] Ejeckam G C, Sogbein S K, Mcleish W A. Can. Med. Assoc. J., 1979, 120: 336.
[9] Cristofanilli M, Budd G T, Ellis M J, Stopeck A, Matera J, Miller M C, Reuben J M, Doyle G V, Allard W J, Terstappen L W M M, Hayes D F. N. Engl. J. Med., 2004, 351: 781.
[10] Hou J M, Krebs M G, Lancashire L, Sloane R, Backen A, Swain R K, Priest L J C, Greystoke A, Zhou C, Morris K, Ward T, Blackhall F H, Dive C. J. Clin. Oncol., 2012, 30: 525.
[11] Balic M, Williams A, Lin H, Datar R, Cote R J. Annu. Rev. Med., 2013, 64: 31.
[12] Bidard F C, Fehm T, Ignatiadis M, Smerage J B, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes D F, Piccart M, Pierga J Y. Cancer Metastasis Rev., 2013, 32: 179.
[13] Liotta L A, Saidel M G, Kleinerman J. Cancer Res., 1976, 36: 889.
[14] Miller M C, Doyle G V, Terstappen L W. J. Oncol., 2010, 2010: 617421.
[15] Kreuger A, Akerblom O, Hogman C F. Vox Sang., 1975, 29: 81.
[16] Lozada J L, Caplanis N, Proussaefs P, Willardsen J, Kammeyer G. J. Oral Implantol., 2001, 27: 38.
[17] Pasqualetti D, Ghirardini A, Cristina A M, Vaglio S, Fakeri A, Waldman A A, Girelli G. Transfus. Apher. Sci., 2004, 30: 23.
[18] Renzi P, Ginns L C. J. Immunol. Methods, 1987, 98: 53.
[19] Bonner W A, Sweet R G, Hulett H R, Herzenbe L A. Rev. Sci. Instrum., 1972, 43: 404.
[20] Miltenyi S, Muller W, Weichel W, Radbruch A. Cytometry, 1990, 11: 231.
[21] Allard W J, Matera J, Miller M C, Repollet M, Connelly M C, Rao C, Tibbe A G J, Uhr J W, Terstappen L W M M. Clin. Cancer Res., 2004, 10: 6897.
[22] De Bono J S, Scher H I, Montgomery R B, Parker C, Miller M C, Tissing H, Doyle G V, Terstappen L W, Pienta K J, Raghavan D. Clin. Cancer Res., 2008, 14: 6302.
[23] Liu M C, Shields P G, Warren R D, Cohen P, Wilkinson M, Ottaviano Y L, Rao S B, Eng-Wong J, Seillier-Moiseiwitsch F, Noone A M, Isaacs C. J. Clin. Oncol., 2009, 27: 5153.
[24] Whitesides G M. Nature, 2006, 442: 368.
[25] 方肇伦(Fang Z L), 徐章润(Xun Z R), 方瑾(Fang J). 化学进展(Progress in Chemistry), 2006, 18(2): 1577.
[26] 冯颖(Feng Y), 王敏(Wang M). 化学进展(Progress in Chemistry), 2006, 18(07/08): 966.
[27] 耿利娜(Geng L N), 姜萍(Jiang P), 徐建栋(Xu J D), 车宝泉(Che B Q), 屈锋(Qu F), 邓玉林(Deng Y L). 化学进展(Progress in Chemistry), 2009, 21(9): 1905.
[28] 姜萍(Jiang P), 屈锋(Qu F), 谭信(Tan X), 李勤(Li Q), 耿利娜(Geng L N), 邓玉林(Deng Y L). 化学进展(Progress in Chemistry), 2009, 21(9): 1895.
[29] 冷川(Leng C), 张晓清(Zhang X Q), 鞠熀先(Ju H X). 化学进展(Progress in Chemistry), 2009, 21(4): 687.
[30] 瞿祥猛(Qu X M), 林荣生(Lin R S), 陈宏(Chen H). 化学进展(Progress in Chemistry), 2011, 23(1): 221.
[31] 王立凯(Wang L K), 冯喜增(Feng X Z). 化学进展(Progress in Chemistry), 2005, 17(3): 482.
[32] 徐溢(Xu Y), 吕君江(Lv J J), 范伟(Fan W), 温志渝(Wen Z Y). 化学进展(Progress in Chemistry), 2007, 19(5): 820.
[33] 徐溢(Xu Y), 张剑(Zhang J), 徐平洲(Xu P Z), 卢倩(Lu Q), 曾雪(Zeng X), 温志渝(Wen Z Y). 化学进展(Progress in Chemistry), 2007, 19(1): 186.
[34] Yeo L Y, Chang H C, Chan P P Y, Friend J R. Small, 2011, 7: 12.
[35] Cima I, Yee C W, Iliescu F S, Phyo W M, Lim K H, Iliescu C, Tan M H. Biomicrofluidics, 2013, 7: 011810.
[36] Hyun K A, Jung H I. Lab Chip, 2014, 14: 45.
[37] Sajeesh P, Sen A K. Microfluid. Nanofluid., 2014, 17: 1.
[38] Yu Z T F, Yong K M A, Fu J P. Small, 2014, 10: 1687.
[39] Sun D K, Wang Y, Jiang D, Xiang N, Chen K, Ni Z H. Appl. Phys. Lett., 2013, 103: 071905.
[40] Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H. Chin. Phys. B, 2013, 22: 114704.
[41] Sun D K, Jiang D, Xiang N, Chen K, Ni Z H. Chin. Phys. Lett., 2013, 30: 074702.
[42] Jiang D, Sun D K, Xiang N, Chen K, Yi H, Ni Z H. Biomicrofluidics, 2013, 7: 034113.
[43] 项楠(Xiang N), 朱晓璐(Zhu X L), 倪中华(Ni Z H). 化学进展(Progress in Chemistry), 2011, 23(9): 1945.
[44] Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H. Microfluid. Nanofluid., 2013, 14: 89.
[45] Xiang N, Yi H, Chen K, Sun D K, Jiang D, Dai Q, Ni Z H. Biomicrofluidics, 2013, 7: 044116.
[46] Xiang N, Chen K, Dai Q, Jiang D, Sun D, Ni Z. Microfluid. Nanofluid., 2015, 18: 29.
[47] 朱晓璐(Zhu X L), 倪中华(Ni Z H). 东南大学学报(自然科学版)(Journal of Southeast University(Natural Science Edition)), 2007, 37(5): 861.
[48] Zhu X L, Yi H, Ni Z H. Biomicrofluidics, 2010, 4: 013202.
[49] Ni Z H, Zu S C, Chen K. Sci. China: Technol. Sci., 2011, 54: 3035.
[50] Zhu X L, Gao Z Q, Yin Z F, Ni Z H. Microfluid. Nanofluid., 2010, 9: 981.
[51] Zhu X L, Yin Z F, Ni Z H. Microfluid. Nanofluid., 2012, 12: 529.
[52] Chen K, Quan Y, Song C, Xiang N, Jiang D, Sun D, Yang J, Yi H, Ni Z. Sens. Actuators A, 2014, published online, DOI:10.1016/j.sna.2014.07.025.
[53] Chen K, Xiang N, Quan Y L, Zhu X L, Sun D K, Yi H, Ni Z H. Microfluid. Nanofluid., 2014, 16: 237.
[54] 唐文来(Tang W L), 项楠(Xiang N), 黄笛(Huang D), 张鑫杰(Zhang X J), 顾兴中(Gu X Z), 倪中华(Ni Z H). 化学进展(Progress in Chemistry), 2014, 26(6): 1050.
[55] Ji H M, Samper V, Chen Y, Heng C K, Lim T M, Yobas L. Biomed. Microdevices, 2008, 10: 251.
[56] VanDelinder V, Groisman A. Anal. Chem., 2006, 78: 3765.
[57] Crowley T A, Pizziconi V. Lab Chip, 2005, 5: 922.
[58] Wilding P, Kricka L J, Cheng J, Hvichia G, Shoffner M A, Fortina P. Anal. Biochem., 1998, 257: 95.
[59] Chen Z Z, Zhang S Y, Tang Z M, Xiao P F, Guo X Y, Lu Z H. Surf. Interface Anal., 2006, 38: 996.
[60] Chen X, Cui D F, Liu C C, Li H. Sens. Actuators B, 2008, 130: 216.
[61] Sim T S, Minseok S, Moon H S. Proceedings of the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012) (Eds. Fujii T, Hibara A, Takeuchi S, et al.). Okinawa. 2012. 1114
[62] Wilding P, Pfahler J, Bau H H, Zemel J N, Kricka L J. Clin. Chem., 1994, 40: 43.
[63] Mohamed H, McCurdy L D, Szarowski D H, Duva S, Turner J N, Caggana M. IEEE T. NanoBiosci., 2004, 3: 251.
[64] Mohamed H, Turner J N, Caggana M. J. Chromatogr. A, 2007, 1162: 187.
[65] Mohamed H, Murray M, Turner J N, Caggana M. J. Chromatogr. A, 2009, 1216: 8289.
[66] Preira P, Grandne V, Forel J M, Gabriele S, Camara M, Theodoly O. Lab Chip, 2013, 13: 161.
[67] Tan S J, Yobas L, Lee G Y H, Ong C N, Lim C T. Biomed. Microdevices, 2009, 11: 883.
[68] McFaul S M, Lin B K, Ma H S. Lab Chip, 2012, 12: 2369.
[69] Kim M S, Sim T S, Kim Y J, Kim S S, Jeong H, Park J M, Moon H S, Kim S I, Gurel O, Lee S S, Lee J G, Park J C. Lab Chip, 2012, 12: 2874.
[70] Chen X, Cui D F, Zhang L L. Chin. Sci. Bull., 2009, 54: 324.
[71] Tachi T, Kaji N, Tokeshi M, Baba Y. Anal Chem., 2009, 81: 3194.
[72] Van Delinder V, Groisman A. Anal. Chem., 2007, 79: 2023.
[73] Sethu P, Sin A, Toner M. Lab Chip, 2006, 6: 83.
[74] Murthy S K, Sethu P, Vunjak-Novakovic G, Toner M, Radisic M. Biomed. Microdevices, 2006, 8: 231.
[75] Lee D, Sukumar P, Mahyuddin A, Choolani M, Xu G L. J. Chromatogr. A, 2010, 1217: 1862.
[76] Geng Z X, Ju Y R, Wang W, Li Z H. Sens. Actuators B, 2013, 180: 122.
[77] Geng Z, Xu Z, Wang W, Su W, Li Z. 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT 2010) (Eds. Tang T A, Jiang Y L). Shanghai: IEEE, 2010. 1474
[78] Ju Y, Geng Z, Wang Q, Li Z. Proceedings of the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012) (Eds. Fujii T, Hibara A, Takeuchi S, et al.). Okinawa: 2012. 1102
[79] Desitter I, Guerrouahen B S, Benali-Furet N, Wechsler J, Janne P A, Kuang Y A, Yanagita M, Wang L L, Berkowitz J A, Distel R J, Cayre Y E. Anticancer Res., 2011, 31: 427.
[80] Hou J M, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C. Am. J. Pathol., 2011, 178: 989.
[81] De Giorgi V, Pinzani P, Salvianti F, Panelos J, Paglierani M, Janowska A, Grazzini M, Wechsler J, Orlando C, Santucci M, Lotti T, Pazzagli M, Massi D. J. Invest. Dermatol., 2010, 130: 2440.
[82] Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Brechot C, Paterlini-Brechot P. Am. J. Pathol., 2000, 156: 57.
[83] Pinzani P, Salvadori B, Simi L, Bianchi S, Distante V, Cataliotti L, Pazzagli M, Orlando C. Hum. Pathol., 2006, 37: 711.
[84] Rostagno P, Moll J L, Bisconte J C, Caldani C. Anticancer Res., 1997, 17: 2481.
[85] 刘大渔(Liu D Y), 严伟(Yan W), 张琼(Zhang Q), 马薇(Ma W), 梁广铁(Liang G T), Lee Y K.分子诊断与治疗杂志(Journal of Molecular Diagnostics and Therapy), 2012, 4(06): 366.
[86] Zheng S, Lin H, Liu J Q, Balic M, Datar R, Cote R J, Tai Y C. J. Chromatogr. A, 2007, 1162: 154.
[87] Lin H K, Zheng S Y, Williams A J, Balic M, Groshen S, Scher H I, Fleisher M, Stadler W, Datar R H, Tai Y C, Cote R J. Clin. Cancer Res., 2010, 16: 5011.
[88] Zheng S Y, Lin H K, Lu B, Williams A, Datar R, Cote R J, Tai Y C. Biomed. Microdevices, 2011, 13: 203.
[89] Xu T, Lu B, Tai Y C, Goldkorn A. Cancer Res., 2010, 70: 6420.
[90] Huang N T, Chen W Q, Oh B R, Cornell T T, Shanley T P, Fu J P, Kurabayashi K. Lab Chip, 2012, 12: 4093.
[91] Chen W Q, Huang N T, Oh B, Lam R H W, Fan R, Cornell T T, Shanley T P, Kurabayashi K, Fu J P. Adv. Healthcare Mater., 2013, 2: 965.
[92] Lim L S, Hu M, Huang M C, Cheong W C, Gan A T L, Looi X L, Leong S M, Koay E S C, Li M H. Lab Chip, 2012, 12: 4388.
[93] Hosokawa M, Asami M, Nakamura S, Yoshino T, Tsujimura N, Takahashi M, Nakasono S, Tanaka T, Matsunaga T. Biotechnol. Bioeng., 2012, 109: 2017.
[94] Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, Matsunaga T. Anal. Chem., 2010, 82: 6629.
[95] Didar T F, Li K B, Tabrizian M, Veres T. Lab Chip, 2013, 13: 2615.
[96] Songjaroen T, Dungchai W, Chailapakul O, Henry C S, Laiwattanapaisal W. Lab Chip, 2012, 12: 3392.
[97] Vella S J, Beattie P, Cademartiri R, Laromaine A, Martinez A W, Phillips S T, Mirica K A, Whitesides G M. Anal. Chem., 2012, 84: 2883.
[98] Kuo J S, Zhao Y X, Schiro P G, Ng L Y, Lim D S W, Shelby J P, Chiu D T. Lab Chip, 2010, 10: 837.
[99] Roda B, Zattoni A, Reschiglian P, Moon M H, Mirasoli M, Michelini E, Roda A. Anal. Chim. Acta, 2009, 635: 132.
[100] Rambaldi D C, Reschiglian P, Zattoni A. Anal. Bioanal. Chem., 2011, 399: 1439.
[101] Vykoukal J, Vykoukal D M, Freyberg S, Alt E U, Gascoyne P R C. Lab Chip, 2008, 8: 1386.
[102] Wang X B, Yang J, Huang Y, Vykoukal J, Becker F F, Gascoyne P R C. Anal. Chem., 2000, 72: 832.
[103] Gascoyne P R C, Noshari J, Anderson T J, Becker F F. Electrophoresis, 2009, 30: 1388.
[104] Shim S, Gascoyne P, Noshari J, Hale K S. Integr. Biol., 2011, 3: 850.
[105] Giddings J C. Science, 1993, 260: 1456.
[106] Yamada M, Nakashima M, Seki M. Anal. Chem., 2004, 76: 5465.
[107] Takagi J, Yamada M, Yasuda M, Seki M. Lab Chip, 2005, 5: 778.
[108] Yamada M, Seki M. Lab Chip, 2005, 5: 1233.
[109] Kersaudy-Kerhoas M, Dhariwal R, Desmulliez M P Y, Jouvet L. Microfluid. Nanofluid., 2010, 8: 105.
[110] Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M, Okano T. Biomed. Microdevices, 2007, 9: 637.
[111] Kim M, Jung S M, Lee K H, Kang Y J, Yang S. Artif. Organs, 2010, 34: 996.
[112] Sethu P, Anahtar M, Moldawer L L, Tompkins R G, Toner M. Anal. Chem., 2004, 76: 6247.
[113] Sethu P, Moldawer L L, Mindrinos M N, Scumpia P O, Tannahill C L, Wilhelmy J, Efron P A, Brownstein B H, Tompkins R G, Toner M. Anal. Chem., 2006, 78: 5453.
[114] Choi S, Park J K. Lab Chip, 2007, 7: 890.
[115] Choi S, Song S, Choi C, Park J K. Lab Chip, 2007, 7: 1532.
[116] Choi S, Ku T, Song S, Choi C, Park J K. Lab Chip, 2011, 11: 413.
[117] Bernate J A, Liu C, Lagae L, Konstantopoulos K, Drazer G. Lab Chip, 2013, 13: 1086.
[118] Choi S, Song S, Choi C, Park J K. Small, 2008, 4: 634.
[119] Huang L R, Cox E C, Austin R H, Sturm J C. Science, 2004, 304: 987.
[120] Inglis D W, Davis J A, Austin R H, Sturm J C. Lab Chip, 2006, 6: 655.
[121] Inglis D W. Appl. Phys. Lett., 2009, 94: 013510.
[122] Long B R, Heller M, Beech J P, Linke H, Bruus H, Tegenfeldt J O. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2008, 78: 046304.
[123] Beech J P, Tegenfeldt J O. Lab Chip, 2008, 8: 657.
[124] Zheng S, Tai Y C, Kasdan H. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2005, 1: 1024.
[125] Davis J A, Inglis D W, Morton K J, Lawrence D A, Huang L R, Chou S Y, Sturm J C, Austin R H. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 14779.
[126] Inglis D W, Lord M, Nordon R E. J. Micromech. Microeng., 2011, 21: 054024.
[127] Beech J P, Holm S H, Adolfsson K, Tegenfeldt J O. Lab Chip, 2012, 12: 1048.
[128] Huang R, Barber T A, Schmidt M A, Tompkins R G, Toner M, Bianchi D W, Kapur R, Flejter W L. Prenatal Diagn., 2008, 28: 892.
[129] Holm S H, Beech J P, Barrett M P, Tegenfeldt J O. Lab Chip, 2011, 11: 1326.
[130] Loutherback K, Chou K S, Newman J, Puchalla J, Austin R H, Sturm J C. Microfluid. Nanofluid., 2010, 9: 1143.
[131] Liu Z B, Huang F, Du J H, Shu W L, Feng H T, Xu X P, Chen Y. Biomicrofluidics, 2013, 7: 011801.
[132] Liu Z B, Zhang W, Huang F, Feng H T, Shu W L, Xu X P, Chen Y. Biosens. Bioelectron., 2013, 47: 113.
[133] Loutherback K, D’Silva J, Liu L, Wu A, Austin R H, Sturm J C. AIP Adv., 2012, 2: 042107.
[134] Zeming K K, Ranjan S, Zhang Y. Nat. Commun., 2013, 4: 1625.
[135] Ranjan S, Zeming K K, Jureen R, Fisher D, Zhang Y. Lab Chip, 2014, 14: 4250.
[136] Inglis D W, Davis J A, Zieziulewicz T J, Lawrence D A, Austin R H, Sturm J C. J. Immunol. Methods, 2008, 329: 151.
[137] Morton K J, Loutherback K, Inglis D W, Tsui O K, Sturm J C, Chou S Y, Austin R H. Lab Chip, 2008, 8: 1448.
[138] Ho B P, Leal L G. J. Fluid Mech., 1974, 65: 365.
[139] Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner M. Phys. Rev. Lett., 2009, 102: 094503.
[140] Asmolov E S. J. Fluid Mech., 1999, 381: 63.
[141] Chun B, Ladd A J C. Phys. Fluids, 2006, 18: 031704.
[142] Segre G, Silberberg A. Nature, 1961, 189: 209.
[143] Choi Y S, Lee S J. Microfluid. Nanofluid., 2010, 9: 819.
[144] Di Carlo D, Irimia D, Tompkins R G, Toner M. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 18892.
[145] Kim Y W, Yoo J Y. J. Micromech. Microeng., 2008, 18: 065015.
[146] Gossett D R, di Carlo D. Anal. Chem., 2009, 81: 8459.
[147] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Phys. Fluids, 2008, 20: 101702.
[148] Mach A J, di Carlo D. Biotechnol. Bioeng., 2010, 107: 302.
[149] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Microfluid. Nanofluid., 2009, 7: 217.
[150] Hur S C, Tse H T K, di Carlo D. Lab Chip, 2010, 10: 274.
[151] Hansson J, Karlsson J M, Haraldsson T, Brismar H, van der Wijngaart W, Russom A. Lab Chip, 2012, 12: 4644.
[152] Di Carlo D. Lab Chip, 2009, 9: 3038.
[153] R D W. Philos. Mag., 1927, 20: 208.
[154] Berger S A, Talbot L, Yao L S. Annu. Rev. Fluid Mech., 1983, 15: 461.
[155] Yoon D H, Ha J B, Bahk Y K, Arakawa T, Shoji S, Go J S. Lab Chip, 2009, 9: 87.
[156] Oozeki N, Ookawara S, Ogawa K, Lob P, Hessel V. AIChE J., 2009, 55: 24.
[157] Ookawara S, Oozeki N, Ogawa K, Lob P, Hessel V. Chem. Eng. Process., 2010, 49: 697.
[158] Oakey J, Applegate R W, Arellano E, di Carlo D, Graves S W, Toner M. Anal. Chem., 2010, 82: 3862.
[159] Di Carlo D, Edd J F, Irimia D, Tompkins R G, Toner M. Anal. Chem., 2008, 80: 2204.
[160] Bhagat A A S, Kuntaegowdanahalli S S, Kaval N, Seliskar C J, Papautsky I. Biomed. Microdevices, 2010, 12: 187.
[161] Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Lab Chip, 2008, 8: 1906.
[162] Russom A, Gupta A K, Nagrath S, di Carlo D, Edd J F, Toner M. New J. Phys., 2009, 11: 075025.
[163] Seo J, Lean M H, Kole A. J. Chromatogr. A, 2007, 1162: 126.
[164] Seo J, Lean M H, Kole A. Appl. Phys. Lett., 2007, 91: 033901.
[165] Wu Z G, Willing B, Bjerketorp J, Jansson J K, Hjort K. Lab Chip, 2009, 9: 1193.
[166] Zhang X B, Wu Z Q, Wang K, Zhu J, Xu J J, Xia X H, Chen H Y. Anal. Chem., 2012, 84: 3780.
[167] Park J S, Song S H, Jung H I. Lab Chip, 2009, 9: 939.
[168] Park J S, Jung H I. Anal. Chem., 2009, 81: 8280.
[169] Warkiani M E, Tay A K P, Khoo B L, Xu X F, Han J, Lim C T. Lab Chip, 2015, published online, DOI: 10.1039/C4LC01058B.
[170] Bhagat A A S, Hou H W, Li L D, Lim C T, Han J Y. Lab Chip, 2011, 11: 1870.
[171] Hyun K A, Kwon K, Han H, Kim S I, Jung H I. Biosens. Bioelectron., 2013, 40: 206.
[172] Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, Papautsky I. Lab Chip, 2009, 9: 2973.
[173] Nivedita N, Papautsky I. Biomicrofluidics, 2013, 7: 054101.
[174] Lee W C, Shi H, Poon Z Y, Nyan L M, Kaushik T, Shivashankar G V, Chan J K Y, Lim C T, Han J, van Vliet K J. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: E4409.
[175] Warkiani M E, Khoo B L, Tan D S W, Bhagat A A S, Lim W T, Yap Y S, Lee S C, Soo R A, Han J, Lim C T. Analyst, 2014, 139: 3245.
[176] Kim T H, Yoon H J, Stella P, Nagrath S. Biomicrofluidics, 2014, 8: 064117.
[177] Sun J S, Li M M, Liu C, Zhang Y, Liu D B, Liu W W, Hu G Q, Jiang X Y. Lab Chip, 2012, 12: 3952.
[178] Sun J S, Liu C, Li M M, Wang J D, Xianyu Y L, Hu G Q, Jiang X Y. Biomicrofluidics, 2013, 7: 011802.
[179] Guan G F, Wu L D, Bhagat A A S, Li Z R, Chen P C Y, Chao S Z, Ong C J, Han J Y. Sci. Rep., 2013, 3: 01475.
[180] Wu L D, Guan G F, Hou H W, Bhagat A A S, Han J. Anal. Chem., 2012, 84: 9324.
[181] Warkiani M E, Guan G F, Luan K B, Lee W C, Bhagat A A S, Chaudhuri P K, Tan D S W, Lim W T, Lee S C, Chen P C Y, Lim C T, Han J. Lab Chip, 2014, 14: 128.
[182] Goldsmith H L, Cokelet G R, Gaehtgens P. Am. J. Physiol., 1989, 257: H1005.
[183] Zhou R H, Chang H C. J. Colloid Interface Sci., 2005, 287: 647.
[184] Pries A R, Secomb T W, Gaehtgens P. Cardiovasc. Res., 1996, 32: 654.
[185] Goldsmith H L, Spain S. Microvasc. Res., 1984, 27: 204.
[186] Fung Y. Microvasc. Res., 1973, 5: 34.
[187] Schmidschonbein G W, Skalak R, Usami S, Chien S. Microvasc. Res., 1980, 19: 18.
[188] Yen R T, Fung Y C. Am. J. Physiol., 1978, 235: H251.
[189] Browne A W, Ramasamy L, Cripe T P, Ahn C H. Lab Chip, 2011, 11: 2440.
[190] Faivre M, Abkarian M, Bickraj K, Stone H A. Biorheology, 2006, 43: 147.
[191] Sollier E, Rostaing H, Pouteau P, Fouillet Y, Achard J L. Sens. Actuators B, 2009, 141: 617.
[192] Shevkoplyas S S, Yoshida T, Munn L L, Bitensky M W. Anal. Chem., 2005, 77: 933.
[193] Jaggi R D, Sandoz R, Effenhauser C S. Microfluid. Nanofluid., 2007, 3: 47.
[194] Yang S, Undar A, Zahn J D. Lab Chip, 2006, 6: 871.
[195] Fan R, Vermesh O, Srivastava A, Yen B K H, Qin L D, Ahmad H, Kwong G A, Liu C C, Gould J, Hood L, Heath J R. Nat. Biotechnol., 2008, 26: 1373.
[196] Geng Z, Zhang L, Ju Y, Wang W, Li Z. The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011 (MicroTAS 2011) (Eds. Landers J). Seattle: CBMS, 2011. 224.
[197] Bernard A, Michel B, Delamarche E. Anal. Chem., 2001, 73: 8.
[198] Zhang Z L, Crozatier C, Le Berre M, Chen Y. Microelectron. Eng., 2005, 78/79: 556.
[199] Litvinov S V, Velders M P, Bakker H A M, Fleuren G J, Warnaar S O. J. Cell Biol., 1994, 125: 437.
[200] Kotz K T, Xiao W, Miller-Graziano C, Qian W J, Russom A, Warner E A, Moldawer L L, De A, Bankey P E, Petritis B O, Camp D G, Rosenbach A E, Goverman J, Fagan S P, Brownstein B H, Irimia D, Xu W H, Wilhelmy J, Mindrinos M N, Smith R D, Davis R W, Tompkins R G, Toner M, Injury I H R. Nat. Med. (NY, U. S.), 2010, 16: 1042.
[201] Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A, Ryan P, Balis U J, Tompkins R G, Haber D A, Toner M. Nature, 2007, 450: 1235.
[202] Gleghorn J P, Pratt E D, Denning D, Liu H, Bander N H, Tagawa S T, Nanus D M, Giannakakou P A, Kirby B J. Lab Chip, 2010, 10: 27.
[203] Kurkuri M D, Al-Ejeh F, Shi J Y, Palms D, Prestidge C, Griesser H J, Brown M P, Thierry B. J. Mater. Chem., 2011, 21: 8841.
[204] Wang S T, Wang H, Jiao J, Chen K J, Owens G E, Kamei K I, Sun J, Sherman D J, Behrenbruch C P, Wu H, Tseng H R. Angew. Chem. Int. Ed., 2009, 48: 8970.
[205] Iyer S, Gaikwad R M, Subba-Rao V, Woodworth C D, Sokolov I. Nat. Nanotechnol., 2009, 4: 389.
[206] Hughes A D, Mattison J, Powderly J D, Greene B T, King M R. J. Visualized Exp., 2012, 64: e4248.
[207] Stott S L, Hsu C H, Tsukrov D I, Yu M, Miyamoto D T, Waltman B A, Rothenberg S M, Shah A M, Smas M E, Korir G K, Floyd F P, Gilman A J, Lord J B, Winokur D, Springer S, Irimia D, Nagrath S, Sequist L V, Lee R J, Isselbacher K J, Maheswaran S, Haber D A, Toner M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 18392.
[208] Wang S T, Liu K, Liu J A, Yu Z T F, Xu X W, Zhao L B, Lee T, Lee E K, Reiss J, Lee Y K, Chung L W K, Huang J T, Rettig M, Seligson D, Duraiswamy K N, Shen C K F, Tseng H R. Angew. Chem. Int. Ed., 2011, 50: 3084.
[209] Choi S Y, Karp J M, Karnik R. Lab Chip, 2012, 12: 1427.
[210] Bose S, Singh R, Hanewich-Hollatz M, Shen C, Lee C H, Dorfman D M, Karp J M, Karnik R. Sci. Rep., 2013, 3: 02329.
[211] Karnik R, Hong S, Zhang H, Mei Y, Anderson D G, Karp J M, Langer R. Nano Lett., 2008, 8: 1153.
[212] Launiere C, Gaskill M, Czaplewski G, Myung J H, Hong S, Eddington D T. Anal. Chem., 2012, 84: 4022.
[213] Sheng W A, Chen T, Katnath R, Xiong X L, Tan W H, Fan Z H. Anal. Chem., 2012, 84: 4199.
[214] Simone G, Neuzil P, Perozziello G, Francardi M, Malara N, di Fabrizio E, Manz A. Lab Chip, 2012, 12: 1500.
[215] Simone G, Malara N, Trunzo V, Perozziello G, Neuzil P, Francardi M, Roveda L, Renne M, Prati U, Mollace V, Manz A, di Fabrizio E. Small, 2013, 9: 2152.
[216] Padler-Karavani V. Cancer Lett. (NY, U. S.), 2014, 352: 102.
[217] Li P, Gao Y, Pappas D. Anal. Chem., 2012, 84: 8140.
[218] Zhu H, Stybayeva G, Macal M, Ramanculov E, George M D, Dandekar S, Revzin A. Lab Chip, 2008, 8: 2197.
[219] Chen W Q, Weng S N, Zhang F, Allen S, Li X, Bao L W, Lam R H W, Macoska J A, Merajver S D, Fu J P. ACS Nano, 2013, 7: 566.
[220] Gurkan U A, Anand T, Tas H, Elkan D, Akay A, Keles H O, Demirci U. Lab Chip, 2011, 11: 3979.
[221] Gurkan U A, Tasoglu S, Akkaynak D, Avci O, Unluisler S, Canikyan S, MacCallum N, Demirci U. Adv. Healthcare Mater., 2012, 1: 661.
[222] Shah A M, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, Stott S L, Maheswaran S, Haber D A, Toner M. Anal. Chem., 2012, 84: 3682.
[223] Hou S, Zhao L B, Shen Q L, Yu J H, Ng C, Kong X J, Wu D X, Song M, Shi X H, Xu X C, OuYang W H, He R X, Zhao X Z, Lee T, Brunicardi F C, Garcia M A, Ribas A, Lo R S, Tseng H R. Angew. Chem. Int. Ed., 2013, 52: 3379.
[224] Ariyasu S, Hanaya K, Watanabe E, Suzuki T, Horie K, Hayase M, Abe R, Aoki S. Langmuir, 2012, 28: 13118.
[225] Lustberg M, Jatana K R, Zborowski M, Chalmers J J. Recent Results Cancer Res., 2012, 195: 97.
[226] Hyun K A, Lee T Y, Lee S H, Jung H L. Biosens. Bioelectron., 2015, 67: 86.
[227] Santisteban M, Reiman J M, Asiedu N K, Behrens M D, Nassar A, Kalli K R, Haluska P, Ingle J N, Hartmann L C, Manjili M H, Radisky D C, Ferrone S, Knutson K L. Cancer Res., 2009, 69: 2887.
[228] Frederick B A, Helfrich B A, Coldren C D, Zheng D, Chan D, Bunn P A, Raben D. Mol. Cancer Ther., 2007, 6: 1683.
[229] Challen G A, Boles N, Lin K K Y, Goodell M A. Cytometry, Part A, 2009, 75A: 14.
[230] Mavrou A, Kouvidi E, Antsaklis A, Souka A, Tzeli S K, Kolialexi A. Prenatal Diagn., 2007, 27: 150.
[231] Van der Gun B T F, Melchers L J, Ruiters M H J, de Leij L F M H, McLaughlin P M J, Rots M G. Carcinogenesis, 2010, 31: 1913.
[232] Kang K H, Kang Y, Xuan X, Li D. Electrophoresis, 2006, 27: 694.
[233] Iliescu C, Xu G L, Loe F C, Ong P L, Tay F E H. Electrophoresis, 2007, 28: 1107.
[234] Patel S, Showers D, Vedantam P, Tzeng T R, Qian S Z, Xuan X C. Biomicrofluidics, 2012, 6: 034102.
[235] Meighan M M, Staton S J R, Hayes M A. Electrophoresis, 2009, 30: 852.
[236] Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K. Biosens. Bioelectron., 2011, 26: 1800.
[237] Cemazar J, Miklavcic D, Kotnik T. Inform. MIDEM J. Microelect. Elect. Compon. Mater., 2013, 43: 143.
[238] Martinez-Duarte R. Electrophoresis, 2012, 33: 3110.
[239] Pethig R, Menachery A, Pells S, de Sousa P. J. Biomed. Biotechnol., 2010, 2010: 182581.
[240] Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K. Anal. Bioanal. Chem., 2010, 396: 401.
[241] Pethig R. Biomicrofluidics, 2010, 4: 022811.
[242] Iliescu C, Xu G L, Samper V, Tay F E H. J. Micromech. Microeng., 2005, 15: 494.
[243] Flanagan L A, Lu J, Wang L, Marchenko S A, Jeon N L, Lee A P, Monuki E S. Stem Cells (Durham, NC, U. S.), 2008, 26: 656.
[244] Cheng I F, Chang H C, Hou D, Chang H C. Biomicrofluidics, 2007, 1: 021503.
[245] Iliescu C, Tresset G, Xu G L. Biomicrofluidics, 2009, 3: 044104.
[246] Gagnon Z, Mazur J, Chang H C. Biomicrofluidics, 2009, 3: 044108.
[247] Gascoyne P R C, Vykoukal J. Electrophoresis, 2002, 23: 1973.
[248] Hughes M P. Electrophoresis, 2002, 23: 2569.
[249] Becker F F, Wang X B, Huang Y, Pethig R, Vykoukal J, Gascoyne P R C. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 860.
[250] Sabuncu A C, Liu J A, Beebe S J, Beskok A. Biomicrofluidics, 2010, 4: 021101.
[251] Vykoukal D M, Gascoyne P R C, Vykoukal J. Integr. Biol., 2009, 1: 477.
[252] Wu L Q, Yung L Y L, Lim K M. Biomicrofluidics, 2012, 6: 014113.
[253] Holmes D, Green N G, Morgan H. IEEE Eng. Med. Biol. Mag., 2003, 22: 85.
[254] Gao J, Riahi R, Sin M L Y, Zhang S F, Wong P K. Analyst, 2012, 137: 5215.
[255] Doh I, Cho Y H. Sens. Actuators A, 2005, 121: 59.
[256] Hu X Y, Bessette P H, Qian J R, Meinhart C D, Daugherty P S, Soh H T. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 15757.
[257] Alazzam A, Stiharu I, Bhat R, Meguerditchian A N. Electrophoresis, 2011, 32: 1327.
[258] Han K H, Han S I, Frazier A B. Lab Chip, 2009, 9: 2958.
[259] Gupta V, Jafferji I, Garza M, Melnikova V O, Hasegawa D K, Pethig R, Davis D W. Biomicrofluidics, 2012, 6: 024133.
[260] An J, Lee J, Lee S H, Park J, Kim B. Anal. Bioanal. Chem., 2009, 394: 801.
[261] Yang F, Yang X M, Jiang H, Bulkhaults P, Wood P, Hrushesky W, Wang G R. Biomicrofluidics, 2010, 4: 013204.
[262] Alshareef M, Metrakos N, Perez E J, Azer F, Yang F, Yang X M, Wang G R. Biomicrofluidics, 2013, 7: 011803.
[263] Jen C P, Chang H H. Biomicrofluidics, 2011, 5: 034101.
[264] Cheng J, Sheldon E L, Wu L, Heller M J, O'Connell J P. Anal. Chem., 1998, 70: 2321.
[265] Wang M W. Electrophoresis, 2012, 33: 780.
[266] Jubery T Z, Dutta P. Electrophoresis, 2013, 34: 643.
[267] Vahey M D, Voldman J. Anal. Chem., 2008, 80: 3135.
[268] Vahey M D, Voldman J. Anal. Chem., 2009, 81: 2446.
[269] Jen C P, Chen W F. Biomicrofluidics, 2011, 5: 044105.
[270] Iliescu C, Xu G L, Ong P L, Leck K J. J. Micromech. Microeng., 2007, 17: S128.
[271] Hagedorn R, Fuhr G, Muller T, Gimsa J. Electrophoresis, 1992, 13: 49.
[272] Bunthawin S, Wanichapichart P, Tuantranont A, Coster H G L. Biomicrofluidics, 2010, 4: 014102.
[273] Cheng I F, Froude V E, Zhu Y X, Chang H C, Chang H C. Lab Chip, 2009, 9: 3193.
[274] Cen E G, Dalton C, Li Y L, Adamia S, Pilarski L M, Kaler K V I S. J. Microbiol. Methods, 2004, 58: 387.
[275] Huang S B, Wu M H, Lin Y H, Hsieh C H, Yang C L, Lin H C, Tseng C P, Lee G B. Lab Chip, 2013, 13: 1371.
[276] Huang S B, Liu S L, Li J T, Wu M H. Int. J. Autom. Smart Technol., 2014, 4: 83.
[277] Chiou P Y, Ohta A T, Wu M C. Nature, 2005, 436: 370.
[278] Catterall W A. Annu. Rev. Biochem., 1995, 64: 493.
[279] Tsong T Y. Biochim. Biophys. Acta, 1992, 1113: 53.
[280] Voldman J. Annu. Rev. Biomed. Eng., 2006, 8: 425.
[281] Ramos A, Morgan H, Green N G, Castellanos A. J. Phys. D: Appl. Phys., 1998, 31: 2338.
[282] Tay F E H, Yu L M, Pang A J, Iliescu C. Electrochim. Acta, 2007, 52: 2862.
[283] Iliescu C, Yu L M, Xu G L, Tay F E H. J. Microelectromech. Syst., 2006, 15: 1506.
[284] 沈玉勤(Shen Y Q), 姚波(Yao B), 方群(Fang Q). 化学进展(Progress in Chemistry), 2010, 22(1): 133.
[285] Zborowski M, Ostera G R, Moore L R, Milliron S, Chalmers J J, Schechter A N. Biophys. J., 2003, 84: 2638.
[286] Nam J, Huang H, Lim H, Lim C, Shin S. Anal. Chem., 2013, 85: 7316.
[287] Han K H, Frazier A B. Lab Chip, 2006, 6: 265.
[288] Han K H, Frazier A B. J. Microelectromech. Syst., 2005, 14: 1422.
[289] Han K H, Frazier A B. J. Appl. Phys., 2004, 96: 5797.
[290] Jung J, Han K H. Appl. Phys. Lett., 2008, 93: 223902.
[291] Furlani E P. J. Phys. D: Appl. Phys., 2007, 40: 1313.
[292] Huang Y Y, Hoshino K, Chen P, Wu C H, Lane N, Huebschman M, Liu H Y, Sokolov K, Uhr J W, Frenkel E P, Zhang J X J. Biomed. Microdevices, 2013, 15: 673.
[293] Kang J H, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber D E. Lab Chip, 2012, 12: 2175.
[294] Casavant B P, Guckenberger D J, Berry S M, Tokar J T, Lang J M, Beebe D J. Lab Chip, 2013, 13: 391.
[295] Casavant B P, Strotman L N, Tokar J J, Thiede S M, Traynor A M, Ferguson J S, Lang J M, Beebe D J. Lab Chip, 2014, 14: 99.
[296] Pamme N, Eijkel J C T, Manz A. J. Magn. Magn. Mater., 2006, 307: 237.
[297] Smistrup K, Lund-Olesen T, Hansen M F, Tang P T. J. Appl. Phys., 2006, 99: 08P102.
[298] Kim S, Han S I, Park M J, Jeon C W, Joo Y D, Choi I H, Han K H. Anal. Chem., 2013, 85: 2779.
[299] Issadore D, Shao H L, Chung J, Newton A, Pittet M, Weissleder R, Lee H. Lab Chip, 2011, 11: 147.
[300] Sivagnanam V, Song B, Vandevyver C, Bunzli J C G, Gijs M A M. Langmuir, 2010, 26: 6091.
[301] Saliba A E, Saias L, Psychari E, Minc N, Simon D, Bidard F C, Mathiot C, Pierga J Y, Fraisier V, Salamero J, Saada V, Farace F, Vielh P, Malaquin L, Viovy J L. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 14524.
[302] Horak D, Svobodova Z, Autebert J, Coudert B, Plichta Z, Kralovec K, Bilkova Z, Viovy J L. J. Biomed. Mater. Res., Part A, 2013, 101: 23.
[303] Plouffe B D, Mahalanabis M, Lewis L H, Klapperich C M, Murthy S K. Anal. Chem., 2012, 84: 1336.
[304] Choi J W, Liakopoulos T M, Ahn C H. Biosens. Bioelectron., 2001, 16: 409.
[305] Ramadan Q, Samper V, Poenar D, Yu C. J. Magn. Magn. Mater., 2004, 281: 150.
[306] Yang L Y, Lang J C, Balasubramanian P, Jatana K R, Schuller D, Agrawal A, Zborowski M, Chalmers J J. Biotechnol. Bioeng., 2009, 102: 521.
[307] Zborowski M, Chamers J J. Anal. Chem., 2011, 83: 8050.
[308] Laurell T, Petersson F, Nilsson A. Chem. Soc. Rev., 2007, 36: 492.
[309] Wiklund M, Hertz H M. Lab Chip, 2006, 6: 1279.
[310] Shi J J, Huang H, Stratton Z, Huang Y P, Huang T J. Lab Chip, 2009, 9: 3354.
[311] Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T. Anal. Chem., 2012, 84: 7954.
[312] Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. Analyst, 2004, 129: 938.
[313] Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T. Lab Chip, 2005, 5: 20.
[314] Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson A M, Aberg L, Marko-Varga G, Malm J, Lilja H, Laurell T. Anal. Chem., 2009, 81: 6030.
[315] Hawkes J J, Coakley W T. Sens. Actuators B, 2001, 75: 213.
[316] Nordin M, Laurell T. Lab Chip, 2012, 12: 4610.
[317] Kapishnikov S, Kantsler V, Steinberg V. J. Stat. Mech.: Theory Exp., 2006, 2006: P01012.
[318] Petersson F, Aberg L, Sward-Nilsson A M, Laurell T. Anal. Chem., 2007, 79: 5117.
[319] Dykes J, Lenshof A, Astrand-Grundstrom I B, Laurell T, Scheding S. PLoS One, 2011, 6: e23074.
[320] Gupta S, Feke D L, Manas-Zloczower I. Chem. Eng. Sci., 1995, 50: 3275.
[321] Burguillos M A, Magnusson C, Nordin M, Lenshof A, Augustsson P, Hansson M J, Elmer E, Lilja H, Brundin P, Laurell T, Deierborg T. PLoS One, 2013, 8: e64233.
[322] Evander M, Johansson L, Lilliehorn T, Piskur J, Lindvall M, Johansson S, Almqvist M, Laurell T, Nilsson J. Anal. Chem., 2007, 79: 2984.
[323] Ashkin A, Dziedzic J M. Ber. Bunsen. Phys. Chem., 1989, 93: 254.
[324] Ashkin A, Dziedzic J M, Yamane T. Nature, 1987, 330: 769.
[325] Kaneta T, Makihara J, Imasaka T. Anal. Chem., 2001, 73: 5791.
[326] Li M Q, Xu J, Romero-Gonzalez M, Banwart S A, Huang W E. Curr. Opin. Biotechnol., 2012, 23: 56.
[327] Liberale C, Cojoc G, Bragheri F, Minzioni P, Perozziello G, La Rocca R, Ferrara L, Rajamanickam V, di Fabrizio E, Cristiani I. Sci. Rep., 2013, 3: 01258.
[328] Ohta A T, Chiou P Y, Phan H L, Sherwood S W, Yang J M, Lau A N K, Hsu H Y, Jamshidi A, Wu M C. IEEE J. Sel. Top. Quantum Electron., 2007, 13: 235.
[329] Shah G J, Ohta A T, Chiou E P Y, Wu M C, Kim C J. Lab Chip, 2009, 9: 1732.
[330] MacDonald M P, Spalding G C, Dholakia K. Nature, 2003, 426: 421.
[331] Milne G, Rhodes D, MacDonald M, Dholakia K. Opt. Lett., 2007, 32: 1144.
[332] Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson H M, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C. Biophys. J., 2005, 88: 3689.
[333] Tanaka T, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H, Matsuki N, Yamaguchi T. Lab Chip, 2012, 12: 4336.
[334] Parichehreh V, Medepallai K, Babbarwal K, Sethu P. Lab Chip, 2013, 13: 892.
[335] Moon H S, Kwon K, Hyun K A, Sim T S, Park J C, Lee J G, Jung H I. Biomicrofluidics, 2013, 7: 014105.
[336] Sim T S, Kwon K, Park J C, Lee J G, Jung H I. Lab Chip, 2011, 11: 93.
[337] Moon H S, Kwon K, Kim S I, Han H, Sohn J, Lee S, Jung H I. Lab Chip, 2011, 11: 1118.
[338] Shen S F, Ma C, Zhao L, Wang Y L, Wang J C, Xu J, Li T B, Pang L, Wang J Y. Lab Chip, 2014, 14: 2525.
[339] Bhagat A A S, Hou H W, Huang S, Lim C T, Han J. The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010 (MicroTAS 2010) (Eds. Verpoorte S). Groningen: CBMS, 2010. 1391.
[340] Hou H W, Warkiani M E, Khoo B L, Li Z R, Soo R A, Tan D S W, Lim W T, Han J, Bhagat A A S, Lim C T. Sci. Rep., 2013, 3: 01259.
[341] Ozkumur E, Shah A M, Ciciliano J C, Emmink B L, Miyamoto D T, Brachtel E, Yu M, Chen P I, Morgan B, Trautwein J, Kimura A, Sengupta S, Stott S L, Karabacak N M, Barber T A, Walsh J R, Smith K, Spuhler P S, Sullivan J P, Lee R J, Ting D T, Luo X, Shaw A T, Bardia A, Sequist L V, Louis D N, Maheswaran S, Kapur R, Haber D A, Toner M. Sci. Transl. Med., 2013, 5: 3005616.
[342] Sha J J, Ni Z H, Liu L, Yi H, Chen Y F. Nanotechnology, 2011, 22: 175304.
[343] Xiang N, Yi H, Chen K, Wang S F, Ni Z H. J. Micromech. Microeng., 2013, 23: 025016.
[1] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.
[4] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[5] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[6] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[7] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.
[8] 项楠, 朱晓璐, 倪中华. 惯性效应在微流控芯片中的应用[J]. 化学进展, 2011, 23(9): 1945-1958.