English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 785-793 DOI: 10.7536/PC150111 前一篇   后一篇

• 综述与评论 •

金纳米棒的制备、生长机理及纯化

鲁闻生*, 王海飞, 张建平, 江龙*   

  1. 北京分子科学国家实验室 中国科学院化学研究所 胶体界面与化学热力学重点实验室 北京 100190
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 鲁闻生, 江龙 E-mail:luwensheng@iccas.ac.cn;jiangl@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 20903106, 21321063, 21161130521)资助

Gold Nanorods: Synthesis, Growth Mechanism and Purification

Lu Wensheng*, Wang Haifei, Zhang Jianping, Jiang Long*   

  1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 20903106, 21321063, 21161130521).
金纳米棒由于其独特物理性质而在众多的各向异性金纳米颗粒中赢得了关注。目前,金纳米棒在纳米电子学、光学、生物医药等研究领域均具有良好的应用前景。对金纳米棒合成的有效调控直接决定着其形状、尺寸和长径比,而这些又进一步影响着金纳米棒的物理性质。本文梳理了金纳米棒制备方法的发展脉络,以模板法、电化学方法、种子生长法以及近年来出现的无种子生长法为主线,系统综述了金纳米棒制备过程实验参数调控对产物结构、物理性质的影响,详细阐述了关于单晶以及孪晶金纳米棒的生长机理,并介绍了提高产物纯度的分离纯化手段。
Gold nanorods have caused much attention due to their unique physical properties. Nowadays, gold nanorods have created a great promise for their use in nanoelectronic, optical and biomedical applications. By adjustment of experimental conditions, the morphology, size and aspect ratio of gold nanorod can be finely controlled, which finally affect the physical properties of gold nanorods. In this review, the various synthesis methods of gold nanorods, such as template method, electrochemical synthesis method, seeded growth method and even recently developed seedless growth method are summarized. The effects of experimental conditions on the crystal structures and physical properties of gold nanorods are discussed in detail, along with the recent research progress on the growth mechanism of single-crystalline and pentahedrally-twinned nanorods. Finally, general strategies to improve the purity of product are provided.

Contents
1 Introduction
2 Synthesis of gold nanorods
2.1 Template method
2.2 Electrochemical synthesis
2.3 Seeded growth method
2.4 Seedless growth method
3 Crystal structure and growth mechanism
3.1 Crystal structure
3.2 Growth mechanism
4 Purification
5 Conclusion

中图分类号: 

()
[1] Frens G. Nat. Phys. Sci., 1973, 241 (105): 20.
[2] 葛余俊(Ge Y J), 赤骋(Chi C), 伍蓉(Wu R), 郭霞(Guo X), 张巧(Zhang Q), 杨剑(Yang J). 化学进展(Progress in Chemistry), 2012, 24 (05): 776.
[3] Lin G, Lu W, Cui W, Jiang L. Cryst. Growth Des., 2010, 10 (3): 1118.
[4] Ren F, Wang H, Zhai C, Zhu M, Yue R, Du Y, Yang P, Xu J, Lu W. ACS Appl. Mater. Interfaces, 2014, 6 (5): 3607.
[5] Yang J, Wu J C, Wu Y C, Wang J K, Chen C C. Chem. Phys. Lett., 2005, 416 (4/6): 215.
[6] 陈德皓(Chen D H), 徐常登(Xu C D), 刘子立(Liu Z L), 陈玲(Chen L), 甄春花(Zhen C H), 孙世刚(Sun S G). 化学进展(Progress in Chemistry), 2013, 25 (10): 1667.
[7] Daniel M C, Astruc D. Chem. Rev., 2004, 104 (1): 293.
[8] Murray R W. Chem. Rev., 2008, 108 (7): 2688.
[9] 马占芳(Ma Z F), 田乐(Tian L), 邸静(Di J), 丁腾(Ding T). 化学进展(Progress in Chemistry), 2009, 21 (1): 134.
[10] Shao L, Fang C, Chen H, Man Y C, Wang J, Lin H Q. Nano Lett., 2012, 12 (3): 1424.
[11] Ueno K, Juodkazis S, Mino M, Mizeikis V, Misawa H. J. Phys. Chem. C, 2007, 111 (11): 4180.
[12] Chen H, Shao L, Li Q, Wang J. Chem. Soc. Rev., 2013, 42 (7): 2679.
[13] Vigderman L, Zubarev E R. Chem. Mater., 2013, 25 (8): 1450.
[14] Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53 (7): 1756.
[15] Xiao J, Li Z, Ye X, Ma Y, Qi L. Nanoscale, 2014, 6 (2): 996.
[16] Banholzer M J, Li S, Ketter J B, Rozkiewicz D I, Schatz G C, Mirkin C A. J. Phys. Chem. C, 2008, 112 (40): 15729.
[17] Cepak V M, Martin C R. J. Phys. Chem. B, 1998, 102 (49): 9985.
[18] Foss C A, Hornyak G L, Stockert J A, Martin C R. J. Phys. Chem., 1994, 98 (11): 2963.
[19] Martin C R. Chem. Mater., 1996, 8 (8): 1739.
[20] Hornyak G L, Patrissi C J, Martin C R. J. Phys. Chem. B, 1997, 101 (9): 1548.
[21] Van der Zande B M I, Böhmer M R, Fokkink L G J, Schönenberger C. J. Phys. Chem. B, 1997, 101 (6): 852.
[22] Van der Zande B M I, Böhmer M R, Fokkink L G J, Schönenberger C. Langmuir, 1999, 16 (2): 451.
[23] Li Z, Kübel C, Pârvulescu V I, Richards R. ACS Nano, 2008, 2 (6): 1205.
[24] Gao C, Zhang Q, Lu Z, Yin Y. J. Am. Chem. Soc., 2011, 133 (49): 19706.
[25] Yu Y Y, Chang S S, Lee C L, Wang C R C. J. Phys. Chem. B, 1997, 101 (34): 6661.
[26] Chang S S, Shih C W, Chen C D, Lai W C, Wang C R C. Langmuir, 1999, 15 (3): 701.
[27] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13 (18): 1389.
[28] Nikoobakht B, El-Sayed M A. Chem. Mater., 2003, 15 (10): 1957.
[29] Liu M Z, Guyot-Sionnest P. J. Phys. Chem. B, 2005, 109 (47): 22192.
[30] Sau T K, Murphy C J. Langmuir, 2004, 20 (15): 6414.
[31] Gao J X, Bender C M, Murphy C J. Langmuir, 2003, 19 (21): 9065.
[32] Gou L, Murphy C J. Chem. Mater., 2005, 17 (14): 3668.
[33] Jiang X C, Brioude A, Pileni M P. Colloids Surf. A, 2006, 277 (1/3): 201.
[34] Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan C R, Murray C B. ACS Nano, 2012, 6 (3): 2804.
[35] Ye X, Zheng C, Chen J, Gao Y, Murray C B. Nano Lett., 2013, 13 (2): 765.
[36] Boleininger J, Kurz A, Reuss V, Sonnichsen C. Phys. Chem. Chem. Phys., 2006, 8 (33): 3824.
[37] Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7 (5): 4135.
[38] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105 (19): 4065.
[39] Khanal B P, Zubarev E R. J. Am. Chem. Soc., 2008, 130 (38): 12634.
[40] Jana N R. Small, 2005, 1 (8/9): 875.
[41] Ali M R, Snyder B, El-Sayed M A. Langmuir, 2012, 28 (25): 9807.
[42] Lai J, Zhang L, Niu W, Qi W, Zhao J, Liu Z, Zhang W, Xu G. Nanotechnology, 2014, 25 (12): 125601.
[43] Perez-Juste J, Liz-Marzan L M, Carnie S, Chan D Y C, Mulvaney P. Adv. Funct. Mater., 2004, 14 (6): 571.
[44] Zhang J, Xi C, Feng C, Xia H, Wang D, Tao X. Langmuir, 2014, 30 (9): 2480.
[45] Zijlstra P, Bullen C, Chon J W M, Gu M. J. Phys. Chem. B, 2006, 110 (39): 19315.
[46] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T. J. Phys. Chem. B, 2005, 109 (29): 13857.
[47] Koeppl S, Koch F P V, Caseri W, Spolenak R. J. Mater. Chem., 2012, 22 (29): 14594.
[48] Xu X, Zhao Y, Xue X, Huo S, Chen F, Zou G, Liang X J. J. Mater. Chem. A, 2014, 2 (10): 3528.
[49] Zhang L, Xia K, Lu Z, Li G, Chen J, Deng Y, Li S, Zhou F, He N. Chem. Mater., 2014, 26 (5): 1794.
[50] Wang Z L, Gao R P, Nikoobakht B, El-Sayed M A. J. Phys. Chem. B, 2000, 104 (23): 5417.
[51] Wang Z L, Mohamed M B, Link S, El-Sayed M A. Surf. Sci., 1999, 440 (1/2): L809.
[52] Carbó-Argibay E, Rodríguez-González B, Gómez-Graña S, Guerrero-Martínez A, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán L M. Angew. Chem. Int. Ed., 2010, 49 (49): 9397.
[53] Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S. J. Mater. Chem., 2002, 12 (6): 1765.
[54] Wu H Y, Huang W L, Huang M H. Cryst. Growth Des., 2007, 7 (4): 831.
[55] Dreaden E C, Alkilany A M, Huang X, Murphy C J, El-Sayed M A. Chem. Soc. Rev., 2012, 41 (7): 2740.
[56] Edgar J A, McDonagh A M, Cortie M B. ACS Nano, 2012, 6 (2): 1116.
[57] Langille M R, Zhang J, Personick M L, Li S, Mirkin C A. Science, 2012, 337 (6097): 954.
[58] Lohse S E, Murphy C J. Chem. Mater., 2013, 25 (8): 1250.
[59] Park K, Drummy L F, Wadams R C, Koerner H, Nepal D, Fabris L, Vaia R A. Chem. Mater., 2013, 25 (4): 555.
[60] Hubert F, Testard F, Spalla O. Langmuir, 2008, 24 (17): 9219.
[61] Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134 (35): 14542.
[62] Personick M L, Langille M R, Zhang J, Mirkin C A. Nano Lett., 2011, 11 (8): 3394.
[63] Nikoobakht B, El-Sayed M A. Langmuir, 2001, 17 (20): 6368.
[64] Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37 (9): 1783.
[65] Garg N, Scholl C, Mohanty A, Jin R. Langmuir, 2010, 26 (12): 10271.
[66] Sau T K, Murphy C J. Philos. Mag., 2007, 87 (14/15): 2143.
[67] Si S, Leduc C, Delville M H, Lounis B. ChemPhysChem, 2012, 13 (1): 193.
[68] Bullen C, Zijlstra P, Bakker E, Gu M, Raston C. Cryst. Growth Des., 2011, 11 (8): 3375.
[69] Kanicky J R, Shah D O. J. Colloid Interface Sci., 2002, 256 (1): 201.
[70] Wang D, Nap R J, Lagzi I, Kowalczyk B, Han S, Grzybowski B A, Szleifer I. J. Am. Chem. Soc., 2011, 133 (7): 2192.
[71] Ye X, Gao Y, Chen J, Reifsnyder D C, Zheng C, Murray C B. Nano Lett., 2013, 13 (5): 2163.
[72] Lohse S E, Burrows N D, Scarabelli L, Liz-Marzán L M, Murphy C J. Chem. Mater., 2014, 26 (1): 34.
[73] Zweifel D A, Wei A. Chem. Mater., 2005, 17 (16): 4256.
[74] Sharma V, Park K, Srinivasarao M. Proc. Natl. Acad. Sci. U. S. A., 2009, 106 (13): 4981.
[75] Wu J, Jia W, Lu W, Jiang L. ACS Appl. Mater. Interfaces, 2012, 4 (12): 6560.
[76] Guo Z, Fan X, Xu L, Lu X, Gu C, Bian Z, Gu N, Zhang J, Yang D. Chem. Commun., 2011, 47 (14): 4180.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[10] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[11] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[12] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[13] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.