English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 861-869 DOI: 10.7536/PC141239 前一篇   后一篇

• 综述与评论 •

纳米晶纤维素手性向列型液晶相结构的形成、调控及应用

代林林1, 李伟1,2, 曹军2, 李坚1, 刘守新*1   

  1. 1. 东北林业大学材料科学与工程学院 哈尔滨 150040;
    2. 东北林业大学机电工程学院 哈尔滨 150040
  • 收稿日期:2014-12-01 修回日期:2015-02-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 刘守新 E-mail:liushouxin@126.com
  • 基金资助:
    国家自然科学基金项目(No. 31170545),中央高校基本科研业务费专项资金项目(No. 2572014EB01)和中国博士后科学基金项目(No. 2014M561313)资助

Formation, Tuning and Application of Chiral Nematic Liquid Crystal Phase Based on Nanocrystalline Cellulose

Dai Linlin1, Li Wei1,2, Cao Jun2, Li Jian1, Liu Shouxin*1   

  1. 1. College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China;
    2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
  • Received:2014-12-01 Revised:2015-02-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31170545), the Fundamental Research Funds for the Central Universities (No. 2572014EB01), and the China Postdoctoral Science Foundation (No. 2014M561313).
手性材料作为一种新型功能材料,尤其是其特殊的光学性能以及在传感器、对映体分离领域的潜在应用,已经引起众多科学研究者的广泛关注。纳米晶纤维素(NCC)基手性材料以其丰富的来源、简单的合成工艺、独特的光学性质以及良好的稳定性等成为当前手性材料研究的热点。本文综述了NCC及其手性向列型液晶相的形成机制,重点介绍了NCC手性结构的调控方法,包括NCC性质、环境条件以及添加剂对其手性结构的影响。最后,总结了近几年NCC手性结构在光电材料和模板剂方面的应用研究进展。
Chiral nematic liquid crystals, which consist of mesogens organized into a long-range helical assembly, exhibit unique properties, such as the selective reflection of circularly polarized light. The incorporation of chiral nematic organization into solid-state materials could give rise to novel properties. Chiral assembled materials have received increasing attention in many research areas as new functional composite materials, especially focusing on their potential application in sensors and enantiomeric resolution. Nanocrystalline cellulose (NCC) is a kind of rod-like nanomaterial obtained from inexpensive renewable biomass, which organizes into a chiral nematic liquid crystal phase via self-assembly in certain circumstance. Taking advantage of the chiral nematic order and nanoscale of the NCC templates, new functional materials can be prepared. Chiral assembled materials based on NCC represent a major branch of future research because of their abundance, simple synthesis and other novel properties. In this paper, the formation, tuning and application of NCC chiral nematic structure are reviewed, especially for the tuning method which included the effect of NCC properties, circumstance, additives. Recent efforts to use NCC chiral nematic structure for application in optical and electronic materials and template are also summarized. The examples covered in this account demonstrate that there is a rich diversity of composite materials accessible using NCC templating.

Contents
1 Introduction
2 Formation and characterization of NCC chiral nematic liquid crystal phase
2.1 Formation of NCC chiral nematic liquid crystal phase
2.2 Characterization of NCC chiral nematic liquid crystal phase
3 Tuning of NCC chiral nematic liquid crystal phase
3.1 NCC properties
3.2 Ion strength
3.3 Sonication
3.4 Temperature
3.5 Additives
4 Application of NCC chiral nematic liquid crystal phase
4.1 Optical and electronic materials
4.2 Chiral carbon materials
4.3 Chiral inorganic materials
4.4 Chiral organic materials
5 Conclusion

中图分类号: 

()
[1] Habibi Y, Lucia L A, Rojas O J. Chem. Rev., 2010, 110(6): 3479.
[2] Wegner T H, Jones P E. Cellulose, 2006, 13(2): 115.
[3] Noorani S, Simonsen J, Atre S. Cellulose, 2007, 14(6): 577.
[4] Entcheva E, Bien H, Yin L, Chung C Y, Farrell M, Kostov Y. Biomaterials, 2004, 25(26): 5753.
[5] Dugan J M, Gough J E, Eichhorn S J. Nanomedicine, 2013, 8(2): 297.
[6] Kim J, Yun S, Ounaies Z. Macromolecules, 2006, 39(12): 4202.
[7] Li W, Zhao X, Liu S X. Carbohydr. Polym., 2013, 94(1): 278.
[8] 李伟(Li W), 王锐(Wang R), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2010, 22(10): 2060.
[9] Marchessault R H, Morehead F F, Watter N M. Nature, 1959, 184: 632.
[10] Werbowyj R S, Gray D G. Mol. Cryst. Liq. Cryst. Lett., 1976, 34: 97.
[11] Revol J F, Bradford H, Giasson J, Marchessault R H, Gray D G. Int. J. Biol. Macromol., 1992, 14(3): 170.
[12] 薛岚(Xue L). 南京林业大学硕士论文(Master Dissertation of Nanjing Forestry University), 2012.
[13] Shafiei-Sabet S, Hamad W Y, Hatzikiriakos S G. Langmuir, 2012, 28(49): 17124.
[14] Lagerwall J P F, Schütz C, Salajkova M, Noh J H, Park J H, Scalia G, Bergstroöm L. NPG Asia Mater., 2014, 6(1): e80.
[15] 徐雁(Xu Y). 化学进展(Progress in Chemistry), 2011, 23(11): 2183.
[16] Araki J, Kuga S. Langmuir, 2001, 17(15): 4493.
[17] Mu X, Gray D G. Langmuir, 2014, 30(31): 9256.
[18] Dumanli A G, Kamita G, Landman J, van der Kooij H, Glover B J, Baumberg J J, Steiner U, Vignolini S. Adv. Opt. Mater., 2014, 2: 646.
[19] Beck S, Bouchard J, Berry R. Biomacromolecules, 2012, 13(5): 1486.
[20] De Souza Lima M M, Borsali R. Macromol. Rapid Commun., 2004, 25(7): 771.
[21] Beck S, Roman M, Gray D G. Biomacromolecules, 2005, 6(2): 1048.
[22] 曾加(Zeng J), 黄勇(Huang Y). 高分子材料科学与工程(Polym. Mater. Sci. Eng.), 2000, 16(6):13.
[23] Abhijit S, Yoko T, Yang H, Cees M W B, Dirk J B, Rint P S. Chem. Commun., 2012, 48(38): 4579.
[24] Edgar C D, Gray D G. Cellulose, 2001, 8(1): 5.
[25] Majoinen J, Kontturi E, Ikkala O, Gray D G. Cellulose, 2012, 19(5): 1599.
[26] Roman M, Gray D G. Langmuir, 2005, 21(12): 5555.
[27] Chen Q, Liu P, Nan F, Zhou L, Zhang J. Biomacromolecules, 2014, 15(11): 4343.
[28] Dumanli A G, van der Kooij H M, Kamita G, Reisner E, Baumberg J J, Steiner U, Vignolini S. ACS Appl. Mater. Interfaces, 2014, 6(15): 12302.
[29] Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J. Acc. Chem. Res., 2014, 47(4): 1088.
[30] Beck S, Bouchard J, Chauve G, Berry R. Cellulose, 2013, 20(3): 1401.
[31] Tang H, Guo B, Jiang H, Xue L, Li B, Cao X, Zhang Q, Li P. Cellulose, 2013, 20(6): 2667.
[32] Bordel D, Putaux J L, Heux L. Langmuir, 2006, 22(11): 4899.
[33] Beck S, Bouchard J. Nord. Pulp. Pap. Res. J., 2014, 29(1): 6.
[34] Rosa M F, Medeiros E S, Malmonge J A, Gregorski K S, Wood D F, Mattoso L H C, Glenn G, Orts W J, Imam S H. Carbohydr. Polym., 2010, 81(1): 83.
[35] Bondeson D, Mathew A, Oksman K. Cellulose, 2006, 13(2): 171.
[36] Dong X M, Kimura T, Revol J F, Gray D G. Langmuir, 1996, 12(8): 20762.
[37] Viet D, Beck S, Gray D G. Cellulose, 2007, 14(2): 109.
[38] Bai W, Holbery J, Li K C. Cellulose, 2009, 16(3): 455.
[39] Dong X M, Revol J, Gray D G. Cellulose, 1998, 5(1): 19.
[40] Hirai A, Inui O, Horii F, Tsuji M. Langmuir, 2008, 25(1): 497.
[41] Revol J F, Godbout L, Gray D G. J. Pulp. Pap. Sci., 1998, 24(5): 146.
[42] Dong X M, Gray D G. Langmuir, 1997, 13(8): 2404.
[43] Beck S, Bouchard J, Berry R. Biomacromolecules, 2010, 12(1): 167.
[44] Filson P B, Dawson-Andoh B E. Bioresour. Technol., 2009, 100(7): 2259.
[45] Li W, Wang R, Liu S. Bioresources, 2011, 6(4): 4271.
[46] Giese M, de Witt J C, Shopsowitz K E, Manning A P, Dong R Y, Michal C A, Hamad W Y, MacLachlan M J. ACS Appl. Mater. Interfaces., 2013, 5(15): 6854.
[47] Guégan R, Morineau D, Lefort R, Béziel W, Guendouz M, Noirez L, Henschel A, Huber P. Eur. Phys. J. E., 2008, 26(3): 261.
[48] Beck S, Bouchard J, Berry R. Biomacromolecules, 2010, 12(1): 167.
[49] Hu Z, Cranston E D, Ng R, Pelton R. Langmuir, 2014, 30(10): 2684.
[50] Edgar C D, Gray D G. Macromolecules, 2002, 35(19): 7400.
[51] Beck S, Viet D, Gray D G. Cellulose, 2006, 13(6): 629.
[52] Cheung C C Y, Giese M, Kelly J A, Hamad W Y, MacLachlan M J. ACS Macro. Lett., 2013, 2(11): 1016.
[53] Dong X M, Gray D G. Langmuir, 1997, 13(11): 3029.
[54] Kelly J A, Shopsowitz K E, Ahn J M, Hamad W Y, MacLachlan M J. Langmuir, 2012, 28(50): 17256.
[55] Kelly J A, Manchee C P K, Cheng S, Ahn J M, Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Mater. Chem. C, 2014, 2: 5093.
[56] Giese M, Khan M K, Hamad W Y, MacLachlan M J. ACS Macro. Lett., 2013, 2(9): 818.
[57] Fernandes S N, Geng Y, Vignolini S, Glover B J, Trindade A C, Canejo J P, Almeida P L, Brogueira P, Godinho M H. Macromol. Chem. Phys., 2013, 214(1): 25.
[58] Zhang Y P, Chodavarapu V P, Kirk A G, Andrews M P. Sensor Actuat. B-Chem., 2013, 176: 692.
[59] Yue W, Randorn C, Attidekou P S, Su Z, Irvine J T, Zhou W. Adv. Funct. Mater., 2009, 19(17): 2826.
[60] Qi H, Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2011, 133(11): 3728.
[61] Zhang Y P, Chodavarapu V P, Kirk A G, Andrews M P. J. Nanophotonics, 2012, 6(1): 063516.
[62] Asefa T. Angew. Chem. Int. Ed., 2012, 51(9): 2008.
[63] 吴伟兵(Wu W B), 张磊(Zhang L). 化学进展(Progress in Chemistry), 2013, 26(0203): 403.
[64] Shopsowitz K E, Hamad W Y, MacLachlan M J. Angew. Chem. Int. Edit., 2011, 50 (46): 10991.
[65] Shopsowitz K E, Kelly J A, Hamad W Y, MacLachlan M J. Adv. Funct. Mater., 2014, 24(3): 327.
[66] Antonelli D M, Ying J Y. Angew. Chem. Int. Edit., 1995, 34(18): 2014.
[67] Dujardin E, Blaseby M, Mann S. J. Mater. Chem., 2003, 13(4): 696.
[68] Thomas A, Antonietti M. Adv. Funct. Mater., 2003, 13(10): 763.
[69] Shin Y, Exarhos G. J. Mater. Lett., 2007, 61(11): 2594.
[70] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468(7322): 422.
[71] Shopsowitz K E, Stahl A, Hamad W Y, MacLachlan M J. Angew. Chem. Int. Edit., 2012, 51(28): 6886.
[72] Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2012, 134 (2): 867.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[3] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[4] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[5] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[8] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[9] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[10] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[11] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[12] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[13] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[14] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[15] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.