English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 870-881 DOI: 10.7536/PC141237 前一篇   后一篇

• 综述与评论 •

基于微流控芯片的CD4+T淋巴细胞计数检测

雷相阳1, 邱宪波*1, 葛胜祥2, 夏宁邵2, 陈兴3, 崔大付3   

  1. 1. 北京化工大学信息科学与技术学院 北京 100029;
    2. 厦门大学公共卫生学院 国家传染病诊断试剂与疫苗工程技术研究中心 厦门 361101;
    3. 中国科学院电子学研究所 传感技术国家重点实验室(北方基地)北京 100190
  • 收稿日期:2014-12-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 邱宪波 E-mail:xbqiu@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 81371711)和中央高校基本科研业务费专项资金(No.ZZ1329,YS1404)

CD4 +T Lymphocyte Counting Technologies Based on Microfluidic Chip

Lei Xiangyang1, Qiu Xianbo*1, Ge Shengxiang2, Xia Ningshao2, Chen Xing3, Cui Dafu3   

  1. 1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
    2. National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361101, China;
    3. North Base of State Key Laboratory of Transduce Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2014-12-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 81371711), and the Fundamental Research Funds for the Central Universities (No.ZZ1329,YS1404)
CD4 +T淋巴细胞是人体免疫缺陷病毒(HIV)的主要感染细胞,慢性HIV感染者逐渐耗尽CD4 +T淋巴细胞,使免疫系统变弱,导致获得性免疫缺陷综合症(AIDS),因此,CD4 +T淋巴细胞的数量对HIV/AIDS的诊断和治疗至关重要。全球范围内HIV/AIDS正处于快速增长期,现有的CD4 +T淋巴细胞计数检测方法由于仪器昂贵、操作复杂、检测成本高,不利于疾病诊疗的普及与推广。为实现低成本、方便、快捷的临床检测,基于微流控芯片的CD4 +T淋巴细胞计数检测方法与技术的研究正日益受到人们的重视。本文在回顾传统CD4 +T淋巴细胞检测方法的基础上,综述、归纳了基于微流控芯片的CD4 +T淋巴细胞计数方法,在全面分析其技术特点的基础上,进一步评述了其综合性能、适用范围、及典型优缺点。最后,本文针对基于微流控芯片的CD4 +T淋巴细胞计数检测技术的发展趋势及商业化应用前景进行了讨论和展望。
CD4 +T lymphocytes are the main infected targets of the Human Immunodeficiency Virus (HIV) in bodies. CD4 level will gradually decrease in HIV hosts when their immune systems are becoming more and more weak, which finally causes Acquired Immune Deficiency Syndrome (AIDS). Therefore, the number of CD4 +T lymphocytes for HIV hosts at different stages is critical to the diagnosis and therapy of HIV/AIDS. For example, Antiretroviral therapy (ART) normally requires four periodical CD4 +T tests in one year for clinical diagnosis and treatment. Population with HIV/AIDS is increasing significantly all over the world in the past ten years. The existing methods for CD4 +T lymphocyte counting are unavailable to developing countries or undeveloped areas because of expensive devices, complicated procedures and high cost. To solve this problem, based on microfluidic technology, new CD4 +T lymphocyte counting methods are being intensively studied for low cost, rapid and convenient CD4 +T lymphocyte detection in the point-of-care test (POCT). After a brief introduction on traditional methods, this paper reviews and summarizes CD4 +T lymphocyte counting methods based on microfluidic chips. The typical technical characteristics of chip-based CD4 +T lymphocyte counting methods are identified and grouped, and furthermore, their general performance, application area, and major advantages with disadvantages are discussed and evaluated in details. Finally, an outlook and conclusion for research, development and commercialization of CD4 +T lymphocyte counting based on microfluidic chip are given after a detailed discussion.

Contents
1 Introduction
2 Clinical value and classification of CD4 +T counting 2.1 Clinical value of CD4 +T counting
2.2 CD4 +T counting with flow cytometry
2.3 CD4 +T counting with manual operation
2.4 CD4 +T counting with microfluidic chip
3 CD4 +T counting based on single cell detection with microfluidic chip
3.1 CD4 +T counting based on cell image
3.2 CD4 +T counting based on optical or electrical signal of single cell
4 CD4 +T counting based on the macro-characteristics of cell group with microfluidic chip
4.1 CD4 +T counting based on chemiluminescence of cell group
4.2 CD4 +T counting based on impedance of cell group
4.3 CD4 +T counting based on the macro-physical characteristics of cell group
5 Conclusion and outlook

中图分类号: 

()
[1] UNAIDS and World Health Organization. AIDS epidemic update, December 2009: 99.
[2] 中华人民共和国卫生部(Ministry of Health of the People's Republic of China). 2011年中国艾滋病疫情估计(China 2011 AIDS Epidemic Estimation Report),2011.
[3] Douek D C, Brenchley J M, Betts M R, Ambrozak D R, Hill B J, Okamoto Y, Casazza J P, Kuruppu J, Kunstman K, Wolinsky S, Grossman Z, Dybul M, Oxenius A, Price D A, Connors M, Koup R A. Nature, 2002, 417(6884): 95.
[4] O'Gorman M, Zijenah L S. Cytometry Part B: Clin. Cytom., 2008, 74: S19.
[5] Boyle D S, Hawkins K R, Steele M S, Singhal M, Cheng X. Trends in Biotechnology, 2012, 30(1): 45.
[6] Chen Z, Abrams W R, Geva E, De Dood C J, González J M, Tanke H J, Niedbala R S, Zhou P, Malamud D, Corstjens P L A M. BioMed Research International, 2014, 8(7): e2944.
[7] Qiu X, Thompson J A, Chen Z, Liu C, Chen D, Ramprasad S, Mauk M G, Ongagna S, Barber C, Abrams W R, Malamud D, Corstjens P L A M, Bau H H. Biomedical Microdevices, 2009, 11(6): 1175.
[8] Desai D, Wu G, Zaman M H. Lab Chip, 2011, 11: 194.
[9] Wang J H, Wang C H, Lin C C, Lei H Y, Lee G B. Microfluidics and Nanofluidics, 2011, 10(3): 531.
[10] When To Start Consortium. Lancet, 2009, 373(9672): 1352.
[11] Autran B, Carcelain G, Li T S, Blanc C, Mathez D, Tubiana R, Katlama C, Debre P, Leibowitch J. Science, 1997, 277: 112.
[12] Aina O, Dadik J, Charurat M, Amangaman P, Gurumdi S, Mang E, Guyit R, Lar N, Datong P, Daniyam C, Kanki P, Abimiku A. Clinical and Diagnostic Laboratory Immunology, 2005, 12(4): 525.
[13] Glynn M T, Kinahan D J, Ducrée J. Lab on a Chip, 2013, 13(14): 2731.
[14] Piyasena M E, Graves S W. Lab on a Chip, 2014, 14(6): 1044.
[15] Nichols J H. Clinics in Laboratory Medicine, 2007, 27(4): 893.
[16] Carella A V, Moss M W, Provost V, Quinn T C. Clinical and Diagnostic Laboratory Immunology, 1995, 2(5): 623.
[17] Briggs C, Machin S, Müller M, Haase W, Hofmann K, Forstreuter F, Hinzmann R. International Journal of Laboratory Hematology, 2009, 31(2): 169.
[18] Thorslund S, Larsson R, Bergquist J, Nikolajeff F, Sanchez J. Biomedical Microdevices, 2008, 10(6): 851.
[19] Thorslund S, Sanchez J, Larsson R, Nikolajeff F, Sanchez J. Colloids and Surfaces B: Biointerfaces, 2005, 46(4): 240.
[20] Thorslund S, Larsson R, Nikolajeff F, Bergquist J, Sanchez J. Sensors and Actuators B: Chemical, 2007, 123(2): 847.
[21] Zachariah R, Reid S D, Chaillet P, Massaquoi M, Schouten E J, Harries A D. Tropical Medicine & International Health, 2011, 16(1): 37.
[22] Beck M, Brockhuis S, van der Velde N, Breukers C, Greve J, Terstappen L W. Lab on a Chip, 2012, 12(1): 167.
[23] Jani I V, Sitoe N E, Chongo P L, Alfai E R, Quevedo J I, Tobaiwa O, Lehe J D, Peter T F. AIDS, 2011, 25(6): 807.
[24] Masahito H, Marie A, Seita N, Tomoko Y, Noriyuki T, Masayuki T, Satoshi N, Tsuyoshi T, Tadashi M. Biotechnology and Bioengineering, 2012,109(8): 2017.
[25] Yun H, Bang H, Min J, Chung C, Chang J K, Han D C. Lab on a Chip, 2010, 10(23): 3243.
[26] Zhu H, Serhan O I, Onur M, Alon G, Aydogan O. Lab on a Chip, 2013, 13(1): 51.
[27] Bae S Y, Park H C, Oh J S, Yoon S Y, Park D W, Choi I K, Oh J H, Hur D S, Chung C, Chang J K, Robinson P, Lim C S. Cytometry Part B (Clinical Cytometry), 2009, 76(5): 345.
[28] Gurkan U A, Anand T, Tas H, Elkan D, Akay A, Keles H O, Demirci U. Lab on a Chip, 2011, 11(23): 3979.
[29] Thangawng A L, Kim J S, Golden J P, Anderson G P, Robertson K L, Low V, Ligler F S. Anal Bioanal Chem. 2010, 398(5): 1871.
[30] Joerg M, Michael I R, Malte H, Marshall W B, Noble M J, Peter K. Lab on a Chip, 2012, 12(23): 5057.
[31] Gao D, Li H F, Guo G S, Lin J M. Talanta, 2010, 82: 528.
[32] 邢婉丽(Xing W L), 程京(Cheng J). 生物芯片技术实验教程(Experiments in Biochip Technology). 北京: 清华大学出版社(Beijing: Tsinghua University Press), 2006.
[33] Wang J H, Wang C H, Lin C C, Lee G B. In Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference. 2010. 955.
[34] Wang Y N, Kang Y, Xu D, Chon C H, Barnett L, Kalams S A, Li D. Lab on a Chip, 2008, 8(2): 309.
[35] Bae S Y, Park H C, Oh J S, Yoon S Y, Park D W, Choi I K, Lim C S. Cytometry Part B: Clinical Cytometry, 2009, 76(5): 345.
[36] Li X, Tibbe A G, Droog E, Terstappen L W, Greve J. Clinical and Vaccine Immunology, 2007, 14(4): 412.
[37] Ymeti A, Li X, Lunter B, Breukers C, Tibbe A G, Terstappen L W, Greve J. Cytometry Part A, 2007, 71(3): 132.
[38] Li X, Breukers C, Ymeti A, Pattanapanyasat K, Sukapirom K, Terstappen L W, Greve J. Cytometry Part B: Clinical Cytometry, 2010, 78(1): 31.
[39] Moon S, Keles H O, Ozcan A, Khademhosseini A, Hæggstrom E, Kuritzkes D, Demirci U. Biosensors and Bioelectronics, 2009, 24(11): 3208.
[40] Ozcan A, Demirci U. Lab on a Chip, 2008, 8(1): 98.
[41] Moon S, Keles H O, Kim Y G, Kuritzkes D, Demirci U. Engineering in Medicine and Biology Society. EMBC 2009. Annual International Conference of the IEEE. IEEE, 2009. 6376.
[42] Stybayeva G, Mudanyali O, Seo S, Silangcruz J, Macal M, Ramanculov E, Dandekar S, Erlinger A, Ozcan A, Revzin A. Analytical Chemistry, 2010, 82(9): 3736.
[43] Zhu H, Mavandadi S, Coskun A F, Yaglidere O, Ozcan A. Analytical Chemistry, 2011, 83(17): 6641.
[44] Alere, PimaTMAnalyser User Guide, Alere, Jena, 2010.
[45] Watkins N N, Sridhar S, Cheng X, Chen G D, Toner M, Rodriguez W, Bashir R. Lab on a Chip, 2011, 11(8): 1437.
[46] Wu X, Chon C H, Wang Y N, Kang Y, Li D. Lab on a Chip, 2008, 8(11): 1943.
[47] Wang Y N, Kang Y, Xu D, Chon C H, Barnett L, Kalams S A, Li D, Li D. Lab on a Chip, 2008, 8(2): 309.
[48] Holmes D, Morgan H. Analytical Chemistry, 2010, 82(4): 1455.
[49] Kiesel P, Beck M, Johnson N. Cytometry Part A, 2011, 79(4): 317.
[50] Gohring J T, Fan X. Sensors, 2010, 10(6): 5798.
[51] Wang Z, Chin S Y, Chin C D, Sarik J, Harper M, Justman J, Sia S K. Analytical Chemistry, 2009, 82(1): 36.
[52] Rodriguez W R, Christodoulides N, Floriano P N, Graham S, Mohanty S, Dixon M, Hsiang M, Peter T, Ahabnam Z, Thior I, Romanovicz D, Bernard B, Goodey A P, Walker B D, McDevitt J T. PLoS medicine, 2005, 2(7): e182.
[53] Mishra N N, Retterer S, Zieziulewicz T J, Isaacson M, Szarowski D, Mousseau D E, Lawrence D A, Turner J N. Biosensors and Bioelectronics, 2005, 21(5): 696.
[54] Jiang X, Spencer M G. Biosensors and Bioelectronics, 2010, 25(7): 1622.
[55] Cheng X, Liu Y S, Irimia D, Demirci U, Yang L, Zamir L, Rodriguez W R, Toner M, Bashir R. Lab on a Chip, 2007, 7(6): 746
[56] Cheng X, Irimia D, Dixon M, Ziperstein J C, Demirci U, Zamir L, Tompkins R G, Toner M, Rodriguez W R. JAIDS, 2007, 45: 257.
[57] Wang S, Wei Q, Zhu T, Huang J, Yu M, Sha Y, Xiong C, Fang J. International Journal of Nonlinear Sciences and Numerical Simulation, 2012,13(5): 311
[58] Glynn M T, Kinahan D, Ducree J. Lab on a Chip, 2014,14: 2844.
[59] Zachariah R, Reid S D, Chaillet P, Massaquoi M, Schouten E J, Harries A D. Tropical Medicine and International Health, 2011, 16(1): 37.
[60] Boyle D S, Hawkins K R, Steele M S, Singhal M, Cheng X. Trends in Biotechnology, 2012, 30(1): 45.
[61] Parish T. (2012-07-18)[2015-12-01].http://www.burnet.edu.au/news/140_project_nominated_for_saving_lives_at_birth_award.
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[3] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[4] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[5] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[6] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[7] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[8] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[9] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[10] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[11] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[12] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[13] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[14] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[15] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.