English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 853-860 DOI: 10.7536/PC141234 前一篇   后一篇

• 综述与评论 •

二茂铁基环氧衍生物

王建军*1, 丁恒春1, 倪沛红1, 戴礼兴1, 高强*2   

  1. 1. 苏州大学材料与化学化工学部 江苏省先进高分子材料设计及应用重点实验室 苏州 215123;
    2. 江南大学纺织服装学院 生态纺织教育部重点实验室 无锡 214122
  • 收稿日期:2014-12-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 王建军, 高强 E-mail:wangjianjun@suda.edu.cn;gaoqiang@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 20874068)和生态纺织教育部重点实验室(江南大学)开放课题(No. KLET1303)资助

Ferrocene-Based Epoxy Derivatives

Wang Jianjun*1, Ding Hengchun1, Ni Peihong1, Dai Lixing1, Gao Qiang*2   

  1. 1. Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China;
    2. Key Laboratory of Eco-textiles, Ministry of Education, College of Textile & Clothing, Jiangnan University, Wuxi 214122, China
  • Received:2014-12-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 20874068), and the Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University (No. KLET1303).
二茂铁基环氧的分子结构中同时含有环氧和二茂铁,是一类兼具化学活性和多功能性的特殊材料。这类材料具有单体结构多样性和聚合物的多功能性,近年来对其制备方法和应用的研究受到广泛关注。研究者们已利用二茂铁醛、酮、烯、氯醇、双醇、乙酰氯等为中间体,制备出二十多种小分子化合物。采用二茂铁接枝环氧聚合物或含烯单体自由基聚合,分别得到多种结构的聚合物。本文在综述二茂铁基环氧制备方法的基础上,进一步讨论了这类材料的结构稳定性。研究发现,当二茂铁处于环氧的邻位时,极易形成卡宾结构,使得环氧开环并重排成醛。通过列举典型研究实例,阐明其在功能材料、传感介质、燃速催化、催化剂配体以及药物合成等方面的应用,并就其在材料表界面的发展趋势进行了展望。
Ferrocene-based epoxy of the special chemical structure is composed of epoxy and ferrocene. These materials behave as structurally diverse monomers and multifunctional polymers. In recent years, more attention is focused on synthetic approaches and applications due to their high chemical activity and multifunctionality. More than twenty small molecules of ferrocene-based epoxy have been synthesized via ferrocenyl aldehydes, ketones, alkene, chlorohydrins, diols, or chloroacetyl intermediates, and polymerized derivatives have also been developed by ferrocene-modified epoxy polymers or free radical copolymerization of glycidyl ether and vinylferrocene. This review intends to offer relevant synthetic strategies for the preparation of covalent systems based on epoxy and ferrocene. Particular attention has been paid to understand the fundamental stability of these systems. The vicinal epoxy facilitates the formation of ferrocenyl carbonium ions, and is labile toward ring opening and consequent isomerization to the aldehyde. A variety of architectures have a wide range of potential applications in areas such as functional materials, biomedical mediators, chiral ferrocenyl ligands, burn-rate catalysts and antitumor agents, among others. Detailed examples with different chemical structures of polymers are provided to illustrate about their applications. Finally, the future development at the surface and interface of materials is prospected.

Contents
1 Introduction
2 Stability of ferrocene-based epoxys
3 Synthesis of ferrocene-based epoxys
3.1 Base catalysis chlorohydrins
3.2 Corey-Chayovsky reaction
3.3 Sulphur ylide-mediated epoxidation
3.4 Dimethyldioxirane oxidation
3.5 Vicinal diols dehydration
3.6 Darzens reaction
4 Applications of ferrocene-based epoxys
4.1 Functional polymers or resins
4.2 Biomedical mediators
4.3 Chiral ferrocenyl ligands
4.4 Burn-rate catalysts
4.5 Antitumor agents
5 Conclusion

中图分类号: 

()
[1] 陈平(Chen P),刘胜平(Liu S P). 环氧树脂(Epoxy Resins). 北京:化学工业出版社(Beijing:Chemical Industry Press), 1999.
[2] Chen S, Chen W, Shi W, Ma H. Chem. Eur. J., 2012, 18(3): 925.
[3] Werner H. Angew. Chem. Int. Ed., 2012, 51(25): 6052.
[4] Shvekhgeimer M G A. Russ. Chem. Rev., 1996, 65(1): 41.
[5] Moyano A, Rios R. Synlett, 2009, (12): 1863.
[6] 王建军(Wang J J), 王立(Wang L), 王学杰(Wang X J). 化学进展(Progress in Chemistry), 2003, 15(5): 409.
[7] White J E, Silvis H C, Winkler M S, Glass T W, Kirkpatrick D E. Adv. Mater., 2000, 12(23): 1791.
[8] Auvergne R, Caillol S, David G, Boutevin B, Pascault J P. Chem. Rev., 2014, 114(2): 1082.
[9] Egger H, Schlögl K. J. Organomet. Chem., 1964, 2(5): 398.
[10] Hill E A, Richards J H. J. Am. Chem. Soc., 1961, 83(20): 4216.
[11] Gokel G W, Marquarding D, Ugi I K. J. Org. Chem., 1972, 37(20): 3052.
[12] Kilway K V, Streitwieser A. J. Org. Chem., 1999, 64(14): 5315.
[13] Catasús M, Bueno A, Moyano A, Maestro M A, Mahía J. J. Organomet. Chem., 2002, 642(1/2): 212.
[14] Schwink L, Knochel P, Eberle T, Okuda J. Organometallics, 1998, 17(1): 7.
[15] Monlina P, Tárraga A, Curiel D, Velasco M D. J. Organomet. Chem., 2001, 637/639: 258.
[16] Pla D? uk D, Zakrzewski J. J. Organomet. Chem., 2006, 691(3): 287.
[17] Gu L, Jin C, Zhang H, Zhang L. J. Org. Chem., 2014, 79(17): 8453.
[18] Catasús M, Moyano A, Aggarwal V K. Tetrahedron Lett., 2002, 43(19): 3475.
[19] Hata K, Motoyama I, Watanabe H. Bull. Chem. Soc. Jpn., 1963, 36(12): 1698.
[20] Patti A, Nicolosi G. Tetrahedron: Asymmetry, 2000, 11(3): 815.
[21] Gilman H, Hofferth B, Honeycutt J B. J. Am. Chem. Soc., 1952, 74(6): 1594.
[22] Watanabe H, Motoyama I, Hata K. Bull. Chem. Soc. Jpn., 1966, 39(4): 784.
[23] Sosin S L, Alekseeva V P, Litvinova M D, Korshak V V, Zhigach A F. Vysokomol. Soedin. Ser. B, 1976, 18: 703.
[24] Lindvall M K, Koskinen A M P. J. Org. Chem., 1999, 64(13): 4596.
[25] Sevenair J P, Lewis D H, Ponder B W. J. Org. Chem., 1972, 37(25): 4061.
[26] Aggarwal V K, Abdel-Rahman H, Jones R V H, Lee H Y, Reid B D. J. Am. Chem. Soc., 1994, 116(13): 5973.
[27] Goldberg S I, Loeble W D. J. Org. Chem., 1968, 33(7): 2971.
[28] Adam W, Schuhmann R M. J. Organomet. Chem., 1995, 487(1/2): 273.
[29] Patti A, Nicolosi G. Tetrahedron: Asymmetry, 1999, 10(14): 2651.
[30] Patti A, Nicolosi G. Tetrahedron: Asymmetry, 2000, 11(18): 3687.
[31] Dagli D J, Yu P S, Wemple J. J. Org. Chem., 1975, 40(22): 3173.
[32] Arai S, Shirai Y, Ishida T, Shioiri T. Tetrahedron, 1999, 55(20), 6375.
[33] Ma F, Li X, Lan T, Ma Y, Chen B, Song Q. Synthesis, 2005, (12): 1945.
[34] Cangönül A, Behlendorf M, Gansäuer A, van Gastel M. Inorg. Chem., 2013, 52(20): 11859.
[35] Sudo A, Suzuki A, Endo T. J. Polym. Sci. Part A: Polym. Chem., 2013, 51(19): 4213.
[36] Shisodia S U, Auricchio S, Citterio A, Grassi M, Sebastiano R. Tetrahedron lett., 2014, 55(4): 869.
[37] Wang J J, Dai L X, Gao Q, Wu P F, Wang X B. Eur. Polym. J., 2008, 44(3): 602.
[38] Tonhauser C, Alkan A, Schömer M, Dingels C, Ritz S, Mailänder V, Frey H, Wurm F R. Macromolecules, 2013, 46(3): 647.
[39] Alkan A, Natalello A, Wagner M, Frey H, Wurm F R. Macromolecules, 2014, 47(7): 2242.
[40] Chuo T W, Wei T C, Liu Y L. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(16): 3395.
[41] Wright M E, Laub J, Stafford P R, Norris W P. J. Organomet. Chem., 2001, 637/639: 837.
[42] Sriyudthsak M, Cholapranee T, Sawadsaringkarn M, Yupongchaey N, Jaiwang P. Biosens. Bioelectron., 1996, 11(8): 735.
[43] Nagel B, Warsinke A, Katterle M. Langmuir, 2007, 23(12): 6807.
[44] Zhang Z B, Yuan S J, Zhu X L, Neoha K G, Kang E T. Biosens. Bioelectron., 2010, 25(5): 1102.
[45] Tripathi V S, Kandimalla V B, Ju H. Biosens. Bioelectron., 2006, 21(8): 1529.
[46] ?enel M, Abasíyaník M F. Electroanal., 2010, 22(15): 1765.
[47] Çevik E, ?enel M, Abasíyaník M F. Curr. Appl. Phys., 2010, 10(5): 1313.
[48] ?enel M, Çevik E, Abasíyaník M F. Sens. Actuators B, 2010, 145(1): 444.
[49] ?enel M, Çevik E, Abasíyaník M F. Anal. Bioanal. Electrochem., 2011, 3(1): 14.
[50] Dursun F, Ozoner S K, Demirci A, Gorur M, Yilmazb F, Erhan E. J. Chem. Technol. Biotechnol., 2012, 87(1): 95.
[51] Patti A, Pedotti S. Tetrahedron: Asymmetry, 2003, 14(5): 597.
[52] Patti A, Lotz M, Knochel P. Tetrahedron: Asymmetry, 2001, 12(24): 3375.
[53] Kishore K, Pai Verneker V R, Dharumaraj G V. J. Polym. Sci.: Polym. Lett. Ed., 1984, 22(11): 607.
[54] Pedotti S, Patti A. Tetrahedron, 2012, 68(16): 3300.
[55] Ma L, Wang L, Tan Q, Yu H, Huo J, Ma Z, Hu H, Chen Z. Electrochim. Acta, 2009, 54(23): 5413.
[56] Yu H, Wang L, Huo J, Tan Q, Gao J. Des. Monomers Polym., 2008, 11(4): 347.
[57] Yu H, Wang L, Huo J, Ding J, Tan Q. J. Appl. Polym. Sci., 2008, 110(3): 1594.
[58] Yu H, Wang L, Huo J, Li C, Tan Q. Des. Monomers Polym., 2009, 12(4): 305.
[59] Gao J, Wang L, Yu H, Xiao A, Ding W. Propellants Explos. Pyrotech., 2011, 36(5): 404.
[60] 张岩(Zhang Y), 高国新(Gao G X), 韩婷婷(Han T T), 郑元锁(Zheng Y S). 化学推进剂与高分子材料(Chemical Propellants & Polymeric Material), 2011, 9(1): 78, 99.
[61] 王建军(Wang J J), 赵春正(Zhao C Z), 孙君(Sun J),谢浩俊(Xie H J), 张英(Zhang Y), 戴礼兴(Dai L X). ZL 201210188076.2, 2014.
[62] Ornelas C. New J. Chem., 2011, 35: 1973.
[63] Shen S L, Zhu J, Li M, Zhao B X, Miao J Y. Eur. J. Med. Chem., 2012, 54: 287.
[64] Shen S L, Shao J H, Luo J Z, Liu J T, Miao J Y, Zhao B X. Eur. J. Med. Chem., 2013, 63: 256.
[65] Li M, Zhao B X. Eur. J. Med. Chem., 2014, 85: 311.
[1] 林鑫, 管凡夫, 温佳琳, 邵攀霖, 张绪穆. 二茂铁骨架系列三齿配体的合成及其在铱催化不对称氢化中的应用[J]. 化学进展, 2020, 32(11): 1680-1696.
[2] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[3] 宋钊宁, 冯翔, 刘熠斌, 杨朝合, 周兴贵. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773.
[4] 金亨到, 王立, 俞豪杰, 童荣柏, 周卫东. 主链或侧链含二茂铁的聚合物的合成和应用[J]. 化学进展, 2016, 28(1): 51-57.
[5] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[6] 庞义军, 陈晓晖, 许承志, 雷阳军, 魏可镁. 丙烯气相环氧化催化剂及其机理研究[J]. 化学进展, 2014, 26(08): 1307-1316.
[7] 张兴宏, 闵玉勤, 华正江. 含氮杂环结构的阻燃环氧树脂基电子材料[J]. 化学进展, 2014, 26(06): 1021-1031.
[8] 熊兴泉*, 唐忠科, 蔡雷. 基于巯基点击反应与RAFT聚合的功能性聚合物合成[J]. 化学进展, 2012, (9): 1751-1764.
[9] 尤树森, 杨万泰, 尹梅贞* . 刺激响应型功能聚合物的合成及应用[J]. 化学进展, 2012, 24(11): 2198-2211.
[10] 张媛媛, 罗胜联, 尹双凤*. 离子液体催化CO2与环氧化物合成环状碳酸酯[J]. 化学进展, 2012, 24(05): 674-685.
[11] 黎林清, 吕迎, 李军, 董晓丽, 高爽. 金属-有机骨架材料在烯烃氧化中的应用[J]. 化学进展, 2012, 24(05): 747-756.
[12] 周婵, 许家喜. 非对称环氧乙烷的区域选择性亲核开环反应[J]. 化学进展, 2011, 23(01): 165-180.
[13] 樊立辉, 周永丰, 颜德岳, 杨金田, 计兵. 聚二茂铁基硅烷二嵌段共聚物的制备、组装及应用研究[J]. 化学进展, 2011, 23(01): 192-201.
[14] 王新波 黄龙男. 降解型环氧树脂* [J]. 化学进展, 2009, 21(12): 2704-2711.
[15] 冯汝明,刘仲能,顾荣,曹勇,谢在库. 环氧乙烷胺化制乙醇胺* [J]. 化学进展, 2009, 21(0708): 1636-1643.
阅读次数
全文


摘要

二茂铁基环氧衍生物