English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 953-962 DOI: 10.7536/PC141227 前一篇   后一篇

• 综述与评论 •

含AQP仿生膜在水处理中的应用

于致源, 丁万德, 王志宁*   

  1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
  • 收稿日期:2014-12-01 修回日期:2015-03-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 王志宁 E-mail:wangzhn@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21106139, 21476219)和山东省科技发展计划项目(No. 2014GSF116006)资助

Preparation and Application of Aquaporin Containing Biomimetic Membranes for Water Treatment and Desalination

Yu Zhiyuan, Ding Wande, Wang Zhining*   

  1. Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2014-12-01 Revised:2015-03-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21106139,21476219) and the Science and Technology Development Plan of Shandong Province (No.2014GSF116006).
水通道蛋白(aquaporin, AQP)是一种对水分子具有高选择性和渗透性的跨膜蛋白。近几年来,含AQP的仿生膜有望克服传统膜材料通量与截留率之间的上限平衡问题,因此,它在海水淡化和水处理领域的应用吸引了越来越多研究者的关注。本文对含AQP仿生渗透膜的制备方法及性能进行了综述,分别介绍了含AQP双层膜结构仿生膜和封装含AQP囊泡的仿生膜这两大类膜结构所对应的不同制备方法。同时,对含AQP仿生膜中膜结构的组成方式、装载AQP蛋白的囊泡材料、制膜过程中的操作条件等因素对膜结构和性能的影响进行了探究讨论。综合文中所述不同膜的膜性能,得出现阶段含AQP仿生膜还存在着膜面积小、膜机械强度不够高、AQP装载量较低及易受外界因素影响的缺陷,并提出在克服膜缺陷的同时寻找其他仿生水通道及离子通道的思路,使未来仿生膜获得更宽阔的发展道路。
Aquaporins (AQPs) are well-known permeaselective transmembrane proteins which can be incorporated into biomimetic membranes as water channels for sea water desalination and water treatment. Owing to the incorporation of excellent water channels, AQPs containing biomimetic membranes have attracted more and more interests. The latest development in this fascinating area of membrane research and development are reviewed in this paper. The approaches for designing and fabricating AQPs containing biomimetic membranes are described and analyzed, moreover, the improvements of membrane performances are also reviewed. The challenges and limitations of AQP containing biomimetic membranes such as difficult to scale up and low AQP loaded are addressed based on the analysis of membranes performance. Finally, a new idea for finding other novel channels is suggested and the future prospects of AQP containing biomimetic membranes in desalination and water treatments are outlined.

Contents
1 Introduction
2 Methods of AQP embedded biomimetic membranes
2.1 AQP laden supported bilayer biomimetic membranes
2.2 AQP-containing vesicles encapsulated biomimetic membranes
3 Application and performance of AQP embedded membranes in water treatment field
3.1 Performance of AQP embedded biomimetic nanofiltration membranes
3.2 Performance of AQP embedded biomimetic reverse osmosis membranes
3.3 Performance of AQP embedded biomimetic forward osmosis membranes
4 Conclusion and outlook

中图分类号: 

()
[1] Elimelech M, Phillip W A. Science, 2011, 333: 712.
[2] Das R, Sharifah A, Ali M E, Ismail A F, Annuar M S M, Ramakrishna S. Desalination, 2014, 354: 160.
[3] Buonomenna M G. Desalination, 2013, 314: 73.
[4] Wang M Q, Wang Z N, Wang X D, Wang S Z, Ding W D, Gao C J. Environ. Sci. Technol., 2015, 49: 3761.
[5] Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M. J. Membr. Sci., 2014, 454: 359.
[6] Pendergast M M, Hoek E M V. Energ. Environ. Sci., 2011,4: 1946.
[7] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301.
[8] Qiu S, Xue M, Zhu G. Chem. Soc. Rev., 2014, 43: 6116.
[9] Kiesow I, Marczewski D, Reinhardt L, Muehlmann M, Possiwan M, Goedel W A. J. Am. Chem. Soc., 2013,135: 4380.
[10] Ben-Sasson M, Lu X, Bar-Zeev E, Zodrow K R, Nejati S, Qi G, Giannelis E P, Elimelech M. Water Res., 2014, 62: 260.
[11] Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C J. Membr. Sci., 2014,450: 249.
[12] Mi B. Science, 2014, 343: 740.
[13] Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Proc. Natl. Acad. Sci. U.S.A., 2007,104: 20719.
[14] Kaufman Y, Berman A, Freger V. Langmuir, 2010, 26: 7388.
[15] Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J J. Membr. Sci., 2012, 423: 422.
[16] Gonen T, Walz T Q. Rev. Biophys., 2006, 39: 361.
[17] Preston G M, Carroll T P, Guggino W B, Agre P. Science, 1992, 256: 385.
[18] Fu D, Lu M. Mol. Membr. Biol., 2007, 24: 366.
[19] Delamarche C, Thomas D, Rolland J P, Froger A, Gouranton J, Svelto M. J. Bacteriol., 1999, 181: 4193.
[20] Jensen M O, Mouritsen O G. Biophys. J., 2006, 90: 2270.
[21] Mallo R C, Ashby M T. J. Bacteriol., 2006,188: 820.
[22] Schulte D J, Vanhoek A N. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 1997,118: 35.
[23] Wiener M C, Vanhoek A N. Anal. Biochem., 1996,241: 267.
[24] Mathai J C, Tristram-Nagle S, Nagle J F, Zeidel M L. J. Gen. Physiol., 2008,131: 69.
[25] Xie W, He F, Wang B, Tang C Y, Jeyaseelan K, Armugam A. J. Mater. Chem., 2013, 1: 7592.
[26] Hill T R, Taylor B W. Use of Aquaporins to Achieve Needed Water Purity on the International Space Station for the Extravehicular Mobility Unit Space Suit System,American Institute of Aeronautics and Astronautics, 2014. http://www.aquaporin.dk/UserFiles/aquaporin.dk/file/NasaAmesPaper.pdf.
[27] 张治磊(Zhang Z L), 王志宁(Wang Z N), 高学理(Gao X L). 化学进展(Progress in Chemistry), 2012, 24:852.
[28] Wang X D, Wang Z N, Gao C J. 应用化学(Chinese Journal of Applied Chemistry), 2014, 31: 123.
[29] Brian A A, Mccomell H M. Biochim. Biophys. Acta, 1984, 81: 6159.
[30] Horn R G. Biochim.Biophys.Acta, 1984, 778: 224.
[31] Jass J, Tjarnhage T, Puu G. Biophys. J., 2000, 79: 3153.
[32] Li X, Wang R, Tang C, Vararattanavech A, Zhao Y, Torres J. Colloids Surf. B, 2012,94:333.
[33] Zhong P S, Tang C Y, Jeyaseelan K, Armugam A J. Membr. Sci., 2012, 407: 27.
[34] Duong P H H, Tang C Y, Jeyaseelan K, Armugam A, Chen Z, Yang J. J. Membr. Sci., 2012, 409: 34.
[35] Kaufman Y, Grinberg S, Linder C, Heldman E, Gilron J, Freger V. Langmuir, 2013, 29: 1152.
[36] Ibragimova S N, Stibius K B, Szewczykowski P P, Perry M, Bohr H, Nielsen C H. Biophys. J., 2010, 98: 604.
[37] Hoefer I, Steinem C. Soft Matter., 2011, 7: 1644.
[38] Wang H, Tang C Y, Tong Y W, Meier W, Chen Z, Hong M. Soft Matter., 2011, 7: 7274.
[39] Wang H, Tang C Y, Tong Y W, Jeyaseelan K, Armugam A, Chen Z. Small, 2012, 8: 1969.
[40] Sun G, Tang C Y, Jeyaseelan K, Armugam A. Colloids Surf. B, 2013, 102: 466.
[41] Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J. J. Membr. Sci., 2012, 423: 422.
[42] Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G. J. Membr. Sci., 2014, 450: 181.
[43] Sun G, Tang C Y, Jeyaseelan K, Armugam A. RSC Advances, 2013, 3: 473.
[44] Freemantle M. Chem. Eng. News, 2005, 83: 8.
[45] Discher D E, Eisenberg A. Science, 2002, 297: 967.
[46] Wang H L, Tang C Y, Tong Y W, Jeyaseelan K, Armugam A, Duong H H P. J. Membr. Sci., 2013, 434: 130.
[47] Sun G, Tang C Y, Chen N, Lu X, Zhao Q. RSC Advances., 2013, 3: 9178.
[48] Agboola O, Maree J, Mbaya R. Environ. Chem. Lett., 2014, 12: 241.
[49] 俞三传(Yu S C), 高从堦(Gao C J), 张慧(Zhang H). 水处理技术(Technology of Water Treatment), 2005, 31: 6.
[50] Vezzani D, Bandini S. Desalination, 2002, 149: 477.
[51] Bowen W R, Mohammad A W, Hilal N. J. Membr. Sci., 1997, 126: 91.
[52] Amin M T, Alazba A A. Membr. Water. Treat., 2014, 5: 123.
[53] Sun G, Tang C Y, Jeyaseelan K, Armugam A. Colloids Surf. B., 2013, 102: 466.
[54] Petersen R J. J. Membr. Sci., 1993, 83: 81.
[55] Greenlee L F, Lawler D F, Freeman B D, Marrot B, Moulin P. Water Res., 2009, 43: 2317.
[56] Alleva K, Chara O, Amodeo G. FEBS Lett., 2012, 586: 2991.
[57] 徐建国(Xu J G), 尹华(Yin H). 膜科学与技术(Membrane Science and Technology), 2014, 34: 99.
[58] 吴礼光(Wu L G), 周勇(Zhou Y), 张林(Zhang L), 陈欢林(Chen H L), 高从堦(Gao C J). 化学进展(Progress in Chemistry), 2008, 20: 1216.
[59] Cath T Y, Childress A E, Elimelech M. J. Membr. Sci., 2006, 281: 70.
[60] 贾奇博(Jia Q B), 韩洪亮(Han H L), 刘必前(Liu B Q). 化学通报(Chemistry), 2012, 75: 771.
[61] Kaufman Y, Grinberg S, Linder C, Heldman E, Gilron J, Shen Y X. J. Membr. Sci., 2014, 457: 50.
[62] 佘乾洪(She Q H), 迟丽娜(Chi L N), 周伟丽(Zhou W L), 张振家(Zhang Z J). 环境科学与技术(Enuivonmental Science and Technology), 2010, 33: 117.
[63] 李刚(Li G), 李雪梅(Li X M), 王铎(Wang D), 何涛(He T), 高从堦(Gao C J). 水处理技术(Technology of Water Treatment), 2010, 29: 1388.
[64] Wang H L, Tang C Y, Tong Y W, Jeyaseelan K, Armugam A, Duong H H P. J. Membr. Sci., 2013, 434: 130.
[65] Tang C Y, Zhao Y, Wang R, Hélix-Nielsen C, Fane A G. Desalination, 2013, 308: 34.
[66] Barboiu M, Gilles A. Acc. Chem. Res., 2013, 46: 2814.
[67] Borgnia M J, Kozono D, Calamita G, Maloney P C, Agre P. J. Mol. Biol., 1999, 291: 1169.
[68] Zhou X B, Cheng R X, Bai W L, Liu Y, Liu F T, He L, Shao Z F, Gong B. Nat. Commun., 2012, 3: 949.
[69] Grzelakowski M, Cherenet M F, Shen Y X, Kumar M. J. Membr. Sci., 2015, 479: 223.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[8] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[9] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[10] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[11] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[12] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[13] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[14] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[15] 郭星星, 高航, 殷立峰, 王思宇, 代云容, 冯传平. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596.
阅读次数
全文


摘要

含AQP仿生膜在水处理中的应用